http://www.kuonline.in

Roll No. Total Pages: 3 8006 BT-1/D-12 ELEMENTS OF ELECTRONICS ENGINEERING Paper-EL-101E Time Allowed: 3 Hours] 1Maximum Marks: 75 Note: Attempt five questions in all, selecting at least one question from each Unit. Question No. 9 is compulsory. UNIT-0 1. (a) Explain, why temperature coefficient of resistance of a intrinsic semiconductor is negative? (b) Explain the formation of depletion region in an open circuit p-n junction diode. What is the effect of forward and reverse hias on depletion region? (c) What do you understand by a clamping circuit? Explain, how p-n junction diode may be used as positive (a) Design a voltage regulator that will maintain an output voltage of 20V across a load of $1K\Omega$ with an input that may vary between 30V and 50 volts. (b) Draw the circuit of centre tapped full wave rectifier and explain its operation with the help of waveforms. 7 UNIT-II 3. (a) Draw the block diagram of voltage series feedback in amplifier. How negative teedback modify the gain of Amplifier? 8006/K/1229/11,600 P. T. O.

http://www.kuonline.in

(b)	Discuss the input and output characteristics of	fCE:	NPN
	transistor in detail.		10

- (a) What do you understand by biasing? Explain the working of fixed biasing and voltage divider biasing circuit with help of accurate analysis.
 - (b) Draw the expression for frequency of oscillation of Wein bridge oscillator.
 5

UNIT-III

- (a) Derive the relation between CMRR and Vout of opamp. How CMRR may be maximized?
 - (b) What are the characteristics of Ideal op-amp? Derive the expression for the gain of non-inverting Amplifier.
 7½
- (a) Differentiate between sensors and transducers. Give some examples of various sensors and transducers.
 - (b) Explain the working of op-amp as integrator with output waveforms. http://www.kuonline.in 7
 - (c) Define (i) CMRR (ii) Slew rate (iii) Input bias current,

UNIT-IV

- (a) Explain construction, working and characteristics of Depletion-Enhancement MOSFET.
 - (b) Explain the working principle of CRO. Discuss its applications for measuring frequency and phase shift of waveforms.
- (a) Explain turn on and turn off characteristics of SCR.
 How SCR may be used as controlled rectifier? 7%

8006/K/1229/11,600

2

http://www.kuonline.in

(b) Define various JFET parameters. Also prove that

$$gm = \frac{-21_{DSS}}{V_p} \left[1 - \frac{V_{GS}}{V_p} \right]. \tag{71/2} \label{eq:mass_posterior}$$

(Compulsory Question)

- 9. (a) Why there is constant current in JFET after pinch off?
 - (b) Derive the relation between α and β .
 - (c) Why Si type transistors are more often used than Ge type transistors?
 - (d) Define PIV in rectifier circuit.
 - (e) Why FET is unipolar device?
 - (f) Discuss need of biasing.
 - (g) What is PSRR in op-amp?
 - (h) How does LED emit light?
 - (i) Why transistor action cannot be achieved by connecting two diodes back to back?
 - (i) Define Miller's theorem.

1½×10=15