Total Pages: 4

BT-4/M-19

34091

MATHEMATICS-III

Paper: AS-201N Opt. (ii)

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt *five* questions in all. Selecting at least *one* question from each unit. All questions carry equal marks.

UNIT-I

1. (a) Find the Fourier series for the function

$$f(x) = \begin{cases} -1 & \text{for } -\pi < x < -\frac{\pi}{2} \\ 0 & \text{for } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 1 & \text{for } \frac{\pi}{2} < x < \pi. \end{cases}$$

Hence diduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

 $(7\frac{1}{2})$

- (b) Obtain the half-range sine-series for e^x in 0 < x < 1. (7½)
- 2. (a) Find the Fourier cosine transform of e^{-x^2} . (7½)

34091/2950/KD/2157

[P.T.O. **16/5** (b) Using Parsenal's identity, Prove that

$$\int_{0}^{\infty} \frac{1-\cos 2x}{x^2} dx = \pi$$

UNIT-II

 $(7\frac{1}{2})$

3. Solve the following LPP by simplex method Minimize Z = x - 3y + 3z

Subject to
$$3x - y + 2z \le 7$$
; $2x + 4y \ge -12$; $-4x + 3y + 8z \le 10$; $x, y, z \ge 0$.

- 4. (a) Explain the terms:
 - (i) Feasible solution.
 - (ii) Unbounded solution.
 - (iii) Convex region. (2½×3)
 - (b) Using Graphical method:

Maximize Z = x + 2y

Subject to
$$2x + y \le 8$$
; $2x + 3y \le 12$;
 $x, y \ge 0$. (7½)

UNIT-III

- 5. (a) If $a + ib = \tanh \left(v + i\frac{\pi}{4}\right)$, prove that $a^2 + b^2 = 1$.
 - (b) Show that the function $v(x, y) = \ln (x^2 + y^2) + x 2y$ is Harmonic. Find its conjugate harmonic function u(x, y) and the corresponding analytic function f(z). (7½)

34091/2950/KD/2157

2

6. (a) Evaluate, using Cauchy's integral formula:

$$\int_{C} \frac{z}{z^2 - 3z + 2} dz, \text{ where C is } |z - 2| = \frac{1}{2}.$$
 (7½)

(b) Evaluate $\int_{1-i}^{2+3i} (z^2+z)dz$ along the line joining the

points
$$(1, -1)$$
 and $(2, 3)$. $(7\frac{1}{2})$

UNIT-IV

- 7. (a) A man is known to speak lie 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six. (7½)
 - (b) In a normal distribution 17% of the items are below 30 and 17% of the items are above 60. Find the mean and standard deviations. (7½)
- 8. (a) X is a continuous random variable with Probability density function given by

$$f(x) = \begin{cases} kx & \text{if } 0 \le x < 2 \\ 2k & \text{if } 2 \le x < 4 \\ -kx + 6k & \text{if } 4 \le x < 6 \end{cases}$$

Find
$$k$$
 and mean value of X . (7½)

34091/2950/KD/2157

3

IP.T.O.

- (b) In 100 sets of ten tosses of an unbiased coin, in how many cases do you expect to get
 - (i) 7 heads and 1 tails.
 - (ii) at least 7 heads.

 $(7\frac{1}{2})$