Total Pages: 3

BT-3/D-18

33090

ANALOG COMMUNICATION Paper: ECE-209(N)

Opt. (I)

Time: Three Hours]

[Maximum Marks: 75

Note: There are total eight questions. Each question carries equal marks. The candidate is required to attempt five questions in all, selecting atleast one question from each unit.

UNIT-I

- Define SNR and Noise Figure. Write note on the measurement and calculation of noise figure in a network.
 - (b) A 12 GHz receiver consists of first stage with gain $G_1 =$ 30 dB and noise temperature $T_1 = 20$ K, a second stage with gain $G_2 = 10$ dB and noise temperature $T_2 = 360$ K and third stage with gain $G_3 = 15$ dB and the noise temperature $T_3 = 1000$ K. Calculate the effective noise temperature and noise factor of the system. Take the reference temperature as 290 K.
- Derive the equation for AM wave. A 100 kHz carrier is simultaneously modulated with 300 Hz, 800 Hz and 2 kHz audio sine waves. What will be the frequencies present in the output?
 - Differentiate between:
 - AM and FM signals.
 - NBFM and WBFM system.

8

http://www.kuonline.in

http://www.kuonline.in

33090/1,000/KD/2101

P.T.O. 24/12

UNIT-II

- (a) Prove that balanced modulator for AM suppresses the carrier.
 - (b) With neat diagram explain working of envelope detector. The waveform $v(t) = (1 + m_a \cos w_m t) \cos w_c t$, with in a constant $(m_a \le 1)$, is applied to the diode detector. Show that, if the demodulator output is to follow the envelope of v(t), it is required at any time to

$$\frac{1}{\text{RC}} = \frac{w_m \cdot m_a}{\sqrt{1 - m_a^2}},$$

where $w_m = \text{angular frequency of modulating signal}$ $m_a =$ modulation index.

http://www.kuonline.in

- With the block diagram, explain the working of a super heterodyne receiver and list their advantages.
 - (b) What is image frequency problem related with superheterodyne receiver and how it can be removed? Elaborate. http://www.kuonline.in

UNIT-III

- With a neat block diagram explain FM transmitter using indirect method.
 - Given FM and PM modulators with the following parameters: Deviation sensitivity as 1.2 kHz/v and 1.2 rad/volt respectively. Carrier: 20 cos $(2\pi \times 10^6 t)$; Modulating signal: $5 \cos(2\pi \times 10^3 t)$: (i) Determine the modulation index, bandwidth and sketch the output

33090/1,000/KD/2101

2

spectrum for both modulators, (ii) Half the modulating frequency and determine the modulation index and sketch the output spectrum for both modulators. Assume random value for the Bessel coefficients.

- 6. (a) Draw the circuit diagram of a ratio detector and explain its operation. How is amplitude limiting obtained in this detector?
 8
 - (b) Why pre-emphasis and de-emphasis are used in FM? Draw the circuit diagrams and the characteristics of preemphasis and de-emphasis circuits.
 7

UNIT-IV

- (a) With neat diagram explain the weaver's method for SSB generation. State the advantages and disadvantages of this method.
 - (b) Explain with the help of wave forms modulation and demodulation of independent side band system. 7
- (a) Explain the operation of SSB Pilot Carrier receiver with necessary block diagram.
 - (b) Draw and explain the generation and demodulation of PWM with its waveform. State the advantages of PWM over PAM.

http://www.kuonline.in Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये,

33090/1,000/KD/2101

3

Paytm or Google Pay 社

http://www.kuonline.in

http://www.kuonline.in