Roll No.

Total Pages: 04

BT-6/M-19

36009

CONTROL SYSTEM ENGINEERING ECE-302E

Time: Three Hours]

[Maximum Marks: 100

Note: Attempt Five questions in all, selecting at least one question from each Unit.

Unit I

- Differentiate between open loop and closed loop control system with examples. 5
 - Explain for Mason's gain formula and applications. 5
 - Find C/R for the control system shown in Fig. 2 below. 10

(3-\$1/7) 1-36009

P.T.O.

Fig. 2

- Draw and explain permanent-magnet stepper motor. 2.
 - List and explain the various effects of using feedback **(b)** 10 in control systems. http://www.kuonline.in

http://www.kuonline.in

Unit II

- Derive and discuss the time response of second-3. 15 order systems.
 - Using the Routh criterion, calculate the range of values of 'K' for the system to be stable. The openloop transfer function of a unity feedback control system is given as:

$$G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$$

L-36009

http://www.kuonline.in

http://www.kuonline.in

2

The characteristic equation of a feedback control system is :

$$s^4 + 3s^3 + 12s^2 + (K - 16)s + K = 0$$

Sketch the root locus plot for $0 \le K \le \infty$ and show that the system is conditionally stable (stable for only a range of gain K). Determine the range of gain for which the system is stable. 20

Unit III

Draw the Bode Plot of the open loop transfer 5. function of a unity feedback control system is: 15

$$G(s)H(s) = \frac{200(s+10)}{s(s+5)(s+20)}$$

Determine:

- Gain Margin
- Phase Margine
- (iii) Closed loop stability.

15

http://www.kuonline.ir

http://www.kuonline.in

- Differentiate between Bode plot and Nyquist plot. 5 (b)
- Sketch the Polar Plot of the open loop transfer : 6. (a)

$$G(s) = \frac{1}{s(1+s)(1+2s)}$$

Determine whether these plots cross the real axis. If so, determine the frequency at which the plots cross the real axis and the corresponding magnitude

$$|G(j\omega)|$$
.

(3-81/8) L-36009

3

P.T.O.

Sketch the Nyquist Plot of the open loop transfer function of a unity feedback control system is:

$$G(s)H(s) = \frac{K}{s(s^2 + s + 4)}$$

If the system is conditionally stable, find the range of K for which the system is stable. 10

Unit IV

A unity feedback system has an open loop transfer function:

$$G(s) = \frac{K}{s(1+s)(1+0.2s)}$$

Design phase-lag compensation for the system has velocity error constant K, = 8 sec-1, phase margin = 40°. Also compare the cross-over frequency of the uncompensated and compensated systems.

A feedback system has a closed loop transfer function:

$$\frac{C(s)}{U(s)} = \frac{10(s+6)}{s(s+2)(s+4)}$$

Construct three different state models for this system and give block diagram representation for each state model.

20

http://www.kuonline.in