Roll No.

Total Pages: 04

BT-8/D-18

38010

WIRELESS AND MOBILE COMMUNICATION ECE-402-E

Time: Three Hours

[Maximum Marks: 100

Note: Attempt Five questions in all, selecting at least one question from each Section.

Section I

- (a) Briefly explain the factor that influence small scale fading.
 - (b) If a transmitter produces 50 W of power, express the transmit power in unit of dBM and dBW. If 50 W is applied to a unity gain antenna with a 900 MHz carrier frequency, find the received power in dBM at a free space dsitance of 100 m from the antenna. What is Pr (10 km)? Assume unity gain for the receiver antenna

- (a) Derive and explain the free space propagation model to determine the received power at a distance 'd' and relate this power to Electric field.
 - (b) How the received signal strength is predicted using the free space propagation model? Explain. 10

Section II

- 3. (a) Find the average fade duration for threshold levels $\rho = 0.01, \ \rho = 0.1 \ \text{and} \ \rho = 1, \ \text{when the Doppler}$ frequency.
 - (b) For a Rayleigh fading signal, compute the positive-going level crossing rate of p=1, when the maximum Doppler frequency is 20 Hz. What is the maximum velocity of the mobile for this Doppler frequency if the carrier frequency is 900 MHz? 6
- 4. Consider a transmitter which radiates a sinusoidal carrier frequency of 1850 MHz. For a vehicle moving 60 mph, compute the received carrier frequency if the mobile is moving:
 - (a) directly towards the transmitter
 - (b) directly away from the transmitter
 - (c) in a direction which is perpendicular to the direction of arrival of transmitted signal? 20

2

Section III

5.	(a)	Explain the principle of cellular networks and	
		various types of Handoff techniques. 5	
	(b)	If a signal to interference ratio of 15 dB is required	
		for satisfactory forward channel performance of a	
		cellular system; what is the frequency reuse factor	
		and cluster size that should be used for maximum	
		capacity if the path loss exponents is (i) $n = 4$	
		(ii) $n = 3$? Assume that there are 6 co-channel	
		cells in the fires tiers, and all of them are at the	
		same distance from the mobile. Use suitable	
		approximation. 15	
6.	(a)	What is an umbrella cell approach? Explain. 5	
	(b)	Explain cellular frequency Reuse concept? 5	
	(c)	What is channel assignment? What are the types?	

(d) What are the techniques used to expand the capacity of cellular system?

Section IV

7. (a) With network architecture, explain UMTS system.

(b) Explain GSM system architecture and various interfaces used in GSM.

8.	Expl	•	
	(a)	TDMA	5
	(b)	Okumara's model	5
	(c)	Spatial diversity	5
	(d)	Digital modulation in slow flat-fading	channels.