Roll No.

8616

Printed Pages: 4

BT-6/M-15

ANALYSIS AND DESIGN OF ALGORITHMS Paper-IT-352

Time allowed: 3 hours]

[Maximum marks: 100

Note: Attempt five questions in all, selecting at least one question from each unit. All questions carry equal marks.

Unit-I

- (a) Explain how time complexity of an algorithm is computed. Explain asymptotic notations used in algorithm analysis.
 - (b) Use mathematical induction to show that when n is an exact power of 2, the solution of the recurrence:

$$T(n) = \begin{cases} 2 & \text{if } n = 2, \\ 2T(n/2) + n & \text{if } n = 2^k, \text{ for } k > 1 \end{cases}$$

is $T(n) = n \lg n$ 10

- Write the quick sort algorithm. Analyze the worst case
 and average case complexity.
 - (b) Find asymptotic bound for following recurrence:

(i)
$$T(n) = T(3n/u) + 1 \text{ and } T(1) = \theta(1)$$

8616

(Turn over

http://www.kuonline.in

(2)

- (ii) T(n) = 4T(n/2) + n
- (iii) $T(n) = 4T(n/2) + n^2$
- (iv) T(n) = 2T(n/2) + n 1

(v)
$$T(n) = 3T(n 1/3) + \log 3 n$$
 10

Unit-fi

- 3. (a) What is a spanning tree? Explain the Prim's algorithm with an example.
 - (b) Find solution of fractional knapsack problem, considering five items along with their respective weights and values:

$$I = < I_1, I_2, I_3, I_4, I_5>$$

$$w = < 5, 10, 20, 30, 40 >$$

$$v = < 30, 20, 100, 90, 160 >$$

The knapsack has a capacity,
$$W = 60$$
.

4. (a) In how many ways, following chain of matrices may be multiplied?

$$A \times B \times C \times D$$

(2 × 5) (5 × 3) (3×6) (6×4)

Find number of multiplications required in each case.

10

http://www.kuonline.in

(3)

(b) Find the shortest tour of TSP for the following instance using dynamic programming:

		\mathbf{B}		
Α	œ	12	5	7.
В	11	œ	13	6
С	∞ 11 4 10	9.	\$	18
D	10	3	2	8

Unit-III

5. (a) Explain backtracking technique for obtaining optimal solution to knapsack problem. Apply same to three types of items with the following respective weights and values, knapsack capacity is W = 5.

$$T = \langle T_1, T_2, T_3 \rangle$$

 $w = \langle 1, 4, 5 \rangle$
 $v = \langle 4, 5, 6 \rangle$
10

- (b) Explain backtracking algorithm to solve 8-queen problem.
- 6. (a) Explain the principles of FIFO branch-and-bound. 8
 - (b) Differentiate between dynamic knapsack and branch and bound knapsack problem.
 - (c) Describe TSP in branch-and-bound. 9

8616

Turn over

http://www.kuonline.in

http://www.kuonline.in

(4)

Unit-IV ...

7.	(a)	Explain DFS techniques of graph traversal.	10
	(b)	Explain classes of P and NP.	10
8.	(a)	Explain Deletion in Binary Search tree.	10
	(b)	Explain B+ tree.	. 4
	(c)	Write algorithm for BST traversal and find of	out its
	•	complexity	6

8616