http://www.kuonline.in

Roll No. Total Pages : 2

BT-6/M-13

8618

COMPUTER GRAPHICS Paper: IT-356

Time: Three Hours [Maximum Marks: 100

Note: Attempt *five* questions in all selecting at least *one* question from each unit. All questions carry equal marks.

UNIT-I

- (a) Write an algorithm for Bresenham's Line generation which will work for all slopes. Calculate the pixel positions along a straight line between P₁(20, 20) and P₂(10, 10).
 - (b) Explain Scan-line algorithm for the filling of polygonal area. (10)
- Discuss various methods of 2D area filling, and state the relative merits and demerits of each. (20)

UNIT-II

- Write a line clipping algorithm which uses parametric form of equations. Find the clipping coordinates of the line P₁P₂ where P₁ = (10, 10) and P₂ = (60, 30), against window with (x_{wmin}, y_{wmin}) = (15, 15) and (x_{wmax}, y_{wmax}) = (25, 25).
- (a) Explain Sutherland-Hodgman Clipping algorithm with example. Also give the limitations of this algorithm.

(b) Suggest modification to Sutherland-Hodgman Polygon clipping algorithm to clip concave. (10)

8618/2900/KD/1244 [P.T.O.

http://www.kuonline.in

UNIT-III

- (a) Find the transformation of triangle A(1, 0), B(0, 1), C(1, 1) by
 - (i) Rotating 45° about the origin and then translating
 1 unit in x and y direction.
 - (ii) Translating I unit in x and y direction and then rotating 45° about the origin.
 (10)
 - (b) Show how shear transformation may be expressed in terms of rotation and scaling. (10)
- 6. Write a detailed note on different types of parallel projections. Also derive the transformation matrix for general parallel projection on XY-plane and given view plane. (20)

UNIT-IV

- 7. (a) Explain how area subdivision method is used for hidden surface elimination. What are the advantages of using this algorithm? (10)
 - (b) Develop a program for the Z-buffer technique. (10)
- 8. Derive a mathematical representation for Bezier curves and state their properties. If the Bezier curve is to be generated for P₁(0, 0), P₂(1, 3), P₃(4, 2) and P₄(2, 1) using six intervals of parameter u, find out the co-ordinates positions for every value of u.
 (20)

8618/2900/KD/1244

2