http://www.kuonline.in

Roll No.

Total Pages: 07

BT-8/D-13

8850

OPERATION RESEARCH

ME-416-E

Time: Three Hours]

[Maximum Marks: 100

Note: Attempt Five questions in all, selecting one question from each Unit. All questions carry equal marks.

Unit I

1. (a) Two products A and B are to be manufactured one single unit of product A requires 2.4 minutes of punch press time and 5 minutes of assembly time. The profit for product A is Re. 0.60 per unit. One single unit of product B requires 3 minutes of punch press time and 2.5 minutes of welding time. The profit for product B is Re. 0.70 per unit. The capacity of the punch press department available for these products is 1,200 minutes/week. The welding

(1-13) L-8850

P.T.O.

http://www.kuonline.in

department has an idle capacity of 600 minutes/week and assembly department has 1,500 minutes/week.

- (i) Formulate the problem as linear programming problem.
- (ii) Determine the quantities of products A and B so that total profit is maximized.
- (b) Write short notes on the following:
 - (i) Sequencing models in OR
 - (ii) Inventory models in OR. 2×10=20
- (a) A company is manufacturing product Y and Z. One unit of product Y requires 4.8 minutes of machining and 10 minutes of assembly time. The profit for product Y is Re. 0.70 per unit. Product Z requires 6 minutes of machining time and 5 minutes of welding time for manufacturing one unit. Profit for Z is Re. 0.90 per unit. The capacity of the machining department available for these products is 1,400 minutes per week. The welding department has an idle capacity of 800 minutes/week and assembly department has 1,800 minutes/week.

Determine the quantities of Y and Z so that total profit is maximized.

(b) Dual of dual is primal. Discuss. 2×10=20

L-8850

2

Unit II

3. The following table gives data on normal time. and cost and crashed time and cost for a project:

Activity	Time		Cost (Rs.)		
	Normal	Crash	Normal	Crash	
1-2	9	4	1300	2400	
1-3	15	13	1000	1380	
2-3	7	4	7000	1540	
2-4	7	3	1200	1920	
2-5	12	6	1700	2240	
3-6	12	11	600	700	
4-5	6	2	1000	1600	
5-6	9	6	900	1200	

Find the optimum project time and corresponding minimum total project cost by crashing appropriate activities in proper order. Show the network on time-scale at each step.

The indirect cost per day is Rs. 400.

4. A steel company has three furnaces and five rolling mills. Transportation cost (rupees per quintal) for sending steel from furnaces to rolling mills are given in the following table:

Furnaces	M 1	M2	M3	M4	M5	Availability	
Α	4	2	3	2	6	. 8	
В	5	4	5	2	1	12	
C	6	5	4	7	3	14	
Requirement	4	4	10	8	8		
(Quintal)							
How should they meet the requirement? 2							0

- 5. Write notes on the following:
 - (i) Minimization of maximum loss
 - (ii) Maximization of minimum gain
 - (iii) Rational Decision Making

Unit III

(iv) Criterion of optimality.

(1-13) L-8850

3

P.T.O.

L-8850

4

20

6. Five jobs 1, 2, 3, 4 and 5 are to be assigned to five persons A, B, C, D and E. The time taken in minutes by each person given in the following matrix:

	1	2	3	4	5
Α	16	13	17	19	20
В	14	12	13	16	17
C	14	11	12	17	18
D	5	5	8	8	11
E	5	3	8	8	10

Determine Optimal Schedule with time. 20

Unit IV

- 7. (a) In relation to Game Theory, explain the following terms:
 - (i) Pay off matrix .
 - (ii) Saddle point
 - (iii) Competitive games
 - (iv) Pure and Mixed Strategies.

- (b) In a service department manned by one server, on an average 8 customers arrive every 5 minutes while the service can server to customer in the same time. Assuming Poisson distribution for arrival and exponential distribution for service rate determine:
 - (i) Average no. of customer in systems
 - (ii) Average no. of customer in queue
 - (iii) Average time a customer spent in system
 - (iv) Average time a customer waits before being served.2×10=20
- 8. (a) The milk plant at a city distributes its products by trucks, loaded at the loading dock. It has its own fleet of trucks plus trucks of a private transport company. This transport company has complained that sometimes its trucks have to wait in line and thus the co. loses money paid for a truck and driver that is only waiting. The company has asked the milk plant

http://www.kuonline.in

management either to go in for a second loading dock or discount prices equivalent to the waiting time.

The following data is available.

Average Arrival Rate (all trucks) = 3 per hour Average Service Rate = 4 per hour.

The transport co. has provided 40% of the total number of trucks. Determine:

- (i) The probability that a truck has to wait.
- (ii) The waiting time of a truck that waits.
- (iii) The expected waiting time of co's trucks per day.
- (b) What are the assumptions underlying common queuing models?
- (c) Why must the service rate be greater than the arrival rate in a single channel queuing system?

 10+5+5=20