Roll No.

Total Pages: 03

MCA/D-18

10067

DESIGN AND ANALYSIS OF ALGORITHMS MCA-14-33

Time: Three Hours]

[Maximum Marks: 80

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

1. Attempt all the questions:

- (a) Write the properties of asymptotic notations.
- (b) Drive the complexity of Binary Search Algorithm.
- (c) List out the memory functions used under dynamic Programming.
- (d) Define flow 'cut'.
- (e) Define time Complexity.
- (f) How NP-Hard problems are different from NP-complete?
- (g) Define Hamiltonian Circuit Problem.
- (h) Distinguish between Algorithm and Pseudo Code.

Unit I

- 2. Write an algorithm based on divide and conquer strategy to search an element in a given list. Assume that the elements of list are in sorted order.
- Explain the method of determining the complexity of procedure by the step count approach. Illustrate with an example.

Unit II

- Explain, how Matrix-chain multiplication problem can be solve using dynamic programming with suitable example.
- 5. Explain Recursive Binary Search Algorithm with suitable examples.

Unit III

6. State the Greedy Knapsack. Find an optimal solution to the Knapsack instance n = 3, m = 20. (P1, P2, P3) = (25, 24, 15) and (W1, W2, W3) = (18, 15, 10).

7. Discuss the single source shortest paths algorithm with suitable example.

Unit IV

- 8. Implement an algorithm for Knapsack problem using NP-Hard Approach.
- 9. Explain the concepts of P, NP and NP-complete Problems.