Roll No. Total Pages: 3

GSE/M-20

1457

COMPUTER SCIENCE (Logical Organisation of Computer)

Paper-II

Time : Three Hours] [Maximum Marks : 25

Note: Attempt *five* questions in all. Question No. 1 is compulsory. Select *one* question from each section.

Compulsory Question

1. Answer in short :

(i) Abbreviate ASCII, BCD. (1)

(ii) Define Duality principle. (1)

(iii) Discuss Half Adder. (1)

(iv) Make table for self-complementing code. (1)

(v) Explain Race-around problem. (1)

SECTION-I

2. Convert the following :

(i)
$$(7.3)_{10} = (\dots)_2$$
 (1)

(ii) $(1101110110)_2 = (\dots)_8$ (1)

1457/PDF/KD/421 [P.T.O.

(iii)
$$(10.625)_{10} = (.....)_{16}$$

(iv)
$$(10.3)_{10} = (.....)_8$$

- **3.** Write notes on the following:
 - (i) Error detection and correction.

 $(2\frac{1}{2})$

(ii) Floating point representation.

 $(2\frac{1}{2})$

 $(1\frac{1}{2})$

SECTION-II

- 4. (i) Define Boolean Algebra and write its postulates. (2)
 - (ii) Solve using Boolean Algebra:

$$XY + \overline{X}Z + YZ = XY + \overline{X}Z.$$

$$ABC + A\overline{B}C + AB\overline{C} + A\overline{B}\overline{C} = A. \tag{1}$$

5. (i) Solve using k-map:

$$Z = \Sigma(0, 2, 3, 7, 9) + \sum_{\phi} (1, 4, 5, 11)$$
 (2½)

(ii) Draw and label 4-variable k-map. (2½)

SECTION-III

- 6. (i) Prove that NAND, NOR are universal gates. (2½)
 - (ii) Draw the circuits for following:

$$X = (\overline{A}B + A\overline{B})CD + \overline{XYZ}. \tag{21/2}$$

1457/000/KD/421

2

7.	(1) Design 4: I multiplexer.	$(2\frac{1}{2})$
	(ii) Design 10 to 4 line encoder.	$(2\frac{1}{2})$

SECTION-IV

- **8.** Draw the logic diagram of RS flip flop and explain its working and find its equation. (5)
- 9. Explain the working of Serial Input Serial Output (SISO) andSerial Input parallel Output Register. (5)