GSM/M-20

MATHEMATICS

(Sequences \& Series)
Paper-BM-241
Time Allowed : 3 Hours] [Maximum Marks : 27
Note : Attempt five questions in all, selecting at least one question from each Unit. Question No. 1 is compulsory.
Compulsory Question

1. (a) Define Interior point of a set. 1
(b) Define Limit Point of a set. 1
(c) Give an example of an unbounded set whichhas no limit point.1
(d) State Cauchy's root test. 1
(e) Define Null sequence. 1
UNIT-I
2. (a) Prove that the interior of set A is the largest open subject of A .3
(b) The intersection of an arbitrary family of closed sets is closed. $2^{1 / 2}$
3. (a) Prove that derived set of any set is a closed set.
(b) Prove or disprove $\mathrm{A}^{\circ} \cup \mathrm{B}^{\circ}=(\mathrm{A} \cup \mathrm{B})^{\circ}$.

UNIT-II

4. (a) Show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\ldots+\frac{1}{(2 n)^{2}}\right)=0 \tag{3}
\end{equation*}
$$

(b) Examine the convergence of the series

$$
\sum_{n=3}^{\infty} x^{\log n}
$$

5. (a) State and prove Cauchy's second theorem on limits.
(b) Show that $\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot-\frac{\mathrm{n}}{\mathrm{n}-1}\right)^{\frac{1}{\mathrm{n}}}=1$.

UNIT-III

6. (a) State and prove Cauchy's root test.
(b) Test the convergence of the series

$$
\begin{equation*}
1+\frac{x^{2}}{2}+\frac{x^{4}}{4}+\frac{x^{6}}{6}+\ldots \ldots ., x>0 \tag{1/2}
\end{equation*}
$$

7. (a) State and prove D'Alembert's ratio test. 3
(b) Discuss the convergence of the series

$$
\begin{equation*}
\frac{1}{2}+\left(\frac{2}{3}\right) \mathrm{x}+\left(\frac{3}{4}\right)^{2} \mathrm{x}^{2}+\left(\frac{4}{5}\right)^{3} \mathrm{x}^{3}+\ldots \ldots \ldots \tag{}
\end{equation*}
$$

UNIT-IV
8. (a) Show that

$$
\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{\mathrm{p}}} \cdot \mathrm{a}_{\mathrm{n}}(\mathrm{P} \geq 0)
$$

is convergent if $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(b) The product

$$
\prod_{n=1}^{\infty}\left(1+a_{n}\right)
$$

is absolutely convergent if and only

$$
\sum_{n=1}^{\infty} a_{n}
$$

is absolutely convergent.
9. (a) Show that the series

$$
\frac{\log ^{2}}{2^{2}}-\frac{\log ^{3}}{3^{2}}+\frac{\log ^{4}}{4^{2}}-\ldots \ldots
$$

converges.
(b) Show that the series

$$
\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}-1}}{\mathrm{n}}\left(1+\frac{1}{\mathrm{n}}\right)^{-\mathrm{n}}
$$

is convergent.

