BHQ/M-20

Note : Attempt five questions in all, selecting one question from each section. Question No. 1 is compulsory.
नोट : प्रत्येक खण्ड से एक-एक प्रश्न का चयन करते हुए कुल पाँच प्रश्नों के उत्तर दीजिए। प्रश्न संख्या 1 अनिवार्य है।

COMPULSORY QUESTION (अनिवार्य प्रश्न)

1. (i) What do you mean by discrete random variable? Give example.
(ii) Define feasible solution. Give example.
(iii) What do you mean by concave function?
(iv) Define slack variable.
(v) What do you mean by Assignment problems?
(i) यादृच्छिक चर से आपका क्या अभिप्राय है? उदाहरण दीजिए।
(ii) व्यवहार्य समाधान को परिभाषित कीजिए। उदाहरण दीजिए।
(iii) अवतल फलन से आपका क्या अभिप्राय है?
(iv) निर्बल चर को परिभाषित कीजिए।
(v) असाइनमेंट समस्या से आपका क्या अभिप्राय है?

SECTION-I

(खण्ड-I)

2. Show that the entropy of the following probability distribution is

$$
\begin{equation*}
2-\left(\frac{1}{2}\right)^{n-2}: \tag{8}
\end{equation*}
$$

Events: $\begin{array}{lllllll}x_{1} & x_{2} & \ldots & x_{i} & x_{n-1} & x_{n}\end{array}$
Probabilities : $\frac{1}{2} \quad \frac{1}{2^{2}} \quad \cdots \quad \frac{1}{2^{i}} \quad \frac{1}{2^{n-1}} \quad \frac{1}{2^{n}}$

प्रदर्शित कीजिए कि निम्नलिखित प्रायिकता बंटन की एन्ट्रोपी 2 - $\left(\frac{1}{2}\right)^{n-2}$
है :
घटनाएँ : $\quad x_{1} \quad x_{2} \quad \ldots \quad x_{i} \quad x_{n-1} \quad x_{n}$
प्रायिकता : $\quad \frac{1}{2} \quad \frac{1}{2^{2}} \quad \cdots \quad \frac{1}{2^{i}} \quad \frac{1}{2^{n-1}} \quad \frac{1}{2^{n}}$
3. State and prove the law of large numbers.

बड़ी संख्याओं के नियम बताइए तथा सिद्ध कीजिए।

SECTION-II

(खण्ड-II)
4. Solve the following LPP using graphical method :

Minimize $Z=3 X+2 Y$
Subject to
$5 X+Y \geq 10$
$X+Y \geq 6$
$X+4 Y \geq 12$
$X, Y \geq 0$.
ग्राफीय विधि का उपयोग करते हुए निम्नलिखित रैखिक प्रोग्रामन समस्या को हल कीजिए :

निम्नलिखित अवरोधों के अन्तर्गत $Z=3 X+2 Y$ का न्यूनतमीकरण कीजिए :
$5 X+Y \geq 10$
$X+Y \geq 6$
$X+4 Y \geq 12$
$X, Y \geq 0$
5. What is linear programming? What are its major assumptions and limitations?

रैखिक प्रोग्रामन क्या है? इसकी प्रमुख अवधारणाएँ तथा सीमाएँ कौनकौन सी हैं?

SECTION-III

(खण्ड-III)
6. Solve the following LPP using Simplex method :

Maximize $Z=4 X+3 Y$
Subject to
$2 X+Y \leq 1000$
$X+Y \leq 800$
$X \leq 400$
$Y \leq 700$
$X, Y \geq 0$
निम्नलिखित रैखिक प्रोग्रामन को सरल विधि का उपयोग करते हुए हल कीजिए :

निम्नलिखित अवरोधों के अन्तर्गत $Z=4 X+3 Y$ का अधिकतमीकरण कीजिए :
$2 X+Y \leq 1000$
$X+Y \leq 800$
$X \leq 400$
$Y \leq 700$
$X, Y \geq 0$
7. For any points $X, Y \in R^{n}$, show that the line segment $[X: Y]$ is a convex set.

किन्हीं बिन्दुओं $X, Y \in R^{n}$ के लिए प्रदर्शित कीजिए कि रेखाखण्ड [$X: Y]$ एक उत्तल समुच्चय है।

SECTION-IV

8. Solve the following LPP using two-phase simplex method :

Minimize $Z=X+Y$
Subject to
$2 X+Y \geq 4$
$X+7 Y \geq 7$
$X, Y \geq 0$.
द्विचरण सरल विधि का उपयोग करते हुए निम्नलिखित रैखिक प्रोग्रामन समस्या को हल कीजिए :

निम्नलिखित अवरोधों के अन्तर्गत $Z=X+Y$ का न्यूनतमीकरण कीजिए :
$2 X+Y \geq 4$
$X+7 Y \geq 7$
$X, Y \geq 0$.
9. Explain the following method for obtaining an initial basic feasible solution of a transportation problem :
(i) North-west corner method, (ii) Least-cost method, (iii) Vogel's approximation method.
किसी परिवहन समस्या का प्रारम्भिक मौलिक व्यवहार्य हल प्राप्त करने हेतु निम्नलिखित की व्याख्या कीजिए :
(i) उत्तर-पश्चिम कोना विधि, (ii) न्यूनतम लागत विधि, (iii) वोगेल की अनुमान विधि।

