## Roll No.

Total Pages : 03

## BCA/M-20 <br> 1901 COMPUTER GRAPHICS <br> BCA-363

Time : Three Hours]
[Maximum Marks : 80

Note : Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

1. (a) Differentiate between interactive and passive computer graphics.
(b) Define affine transformation.
(c) What is Clipping ? What is the relationship between clipping and windowing ?
(d) Name different Cartesian co-ordinate reference frames
(e) Name some common problems associated with scan conversion of elementary objects.
(f) What do you mean by color palette ?
(g) Define Point Clipping.
(h) Write a short note on Rubber-Band techniques. $\mathbf{8 \times 2}$
(3)L-1901

## Unit I

2. List the operating characteristics for the following display technologies :
(a) Raster refresh system
(b) Vector refresh system
(c) Plasma panels
(d) LCDs.

Also write some applications appropriate for each of these display technologies.

10,6
3. (a) Explain various popular graphics input devices.
(b) Explain the various applications areas of computer graphics.

8,8

## Unit II

4. Write an algorithm to plot a line using Bresenham's method. How is it better than DDA? $\mathbf{1 0 , 6}$
5. Explain scan conversion of an ellipse. Compare polynomial method and trigonometric method of scan conversion of an ellipse.

4,12
(3)L-1901

2

## Unit III

6. Derive clockwise and anticlockwise transformation matrices about the origin. Give a transformation matrix to rotate an object by $45^{\circ}$ in anticlockwise direction and then to scale it in the horizontal direction by one-third of the original. 10,6
7. (a) Define homogeneous coordinates. What are the advantages of homogeneous coordinates ?6
(b) What is Shearing ? Is it possible to shear an object by scaling and rotation only ? Describe.

5
(c) What is raster transformation ? Where is raster transformation used ? 5

## Unit IV

8. Can a line clipping algorithm be used for clipping a polygon ? Justify your answer.
Explain the Sutherland-Hodgman polygon clipping algorithm.
9. (a) Explain composite transformation with reference to 3-D coordinate system.
(b) Derive rotation transformation matrix to rotate a 3-dimensional object about an arbitrary axis with angle $\theta$.
