Roll No.

Total Pages: 6

OBCE/M-20

12286

COMPUTER FUNDAMENTALS AND LOGICAL ORGANISATION–II Paper–BC(VOC)-205

Time : Three Hours] [Maximum Marks : 80

Note: Attempt *five* questions in all. Question No. 1 is compulsory.

नोट: कुल पाँच प्रश्नों के उत्तर दीजिए। प्रश्न सं. 1 अनिवार्य है।

COMPULSORY QUESTION (अनिवार्य प्रश्न)

- (i) What is the major disadvantage of S-R flip-flop? How is this addressed in J-K flip-flop? (4)
 - (ii) Explain ripple counter. What is the difference between ripple counter and synchronous counter? (4)
 - (iii) Write a short note on don't care conditions. (4)
 - (iv) Explain interrupt-initiated I/O mode in detail. (4)
 - (v) Differentiate between hard wired and micro program control unit. (4)

) एस-आर फ्लिप-फ्लॉप की प्रमुख हानि क्या है? जे-के फ्लि	प–
	फ्लॉप में इसे किस प्रकार संज्ञान में लिया जाता है?	
() रिपल काउण्टर का वर्णन कीजिए। रिपल काउण्टर तथा सिंक्रो	नस
	काउण्टर के मध्य क्या अन्तर है?	
(1) डोन्ट केयर कंडीशन पर संक्षिप्त टिप्पणी लिखिए।	
(i) इन्टरेप्ट-इनिशिएटेड आई/ओ मोड का विस्तारपूर्वक वर्णन कीजि	ाए।
() हार्ड वायर्ड तथा माइक्रो प्रोग्राम कंट्रोल यूनिट के मध्य अ	न्तर
	कीजिए।	
2. Ex	lain the following:	
) SOPs and POSs.	(5)
() Prime implicants and essential prime implicants.	(5)
(1) Boolean Algebra.	(5)
निग	लिखित का वर्णन कीजिए :	
) एसओपी तथा पीओएस।	
() प्राइम इम्प्लीकैंट्स तथा ईसेन्शियल प्राइम इम्प्लीकैन्ट्स।	
(1) बूलियन बीजगणित।	

3. (i) What is sequential circuit? What are its characteristics?

(7)

(ii) What is a multiplexer? How does it works? What are its applications? (8)

12286/000/KD/1345

- (i) सेक्वेन्शियल सर्किट क्या है? इसकी क्या विशेषताएँ हैं?
- (ii) मल्टीप्लेक्सर क्या है? यह किस प्रकार कार्य करता है? इसके अनुप्रयोग क्या हैं?
- 4. (i) What are universal gates? Why these are named so?

 Justify. (5)
 - (ii) Design a combinational circuit that receives 4-bit binary input and produces its 2's complement. (10)
 - (i) यूनिवर्सल गेट क्या हैं? इनका यह नाम क्यों दिया गया है? औचित्य सिद्ध कीजिए।
 - (ii) एक ऐसा संयोजित परिपथ डिजाइन कीजिए जो 4-बिट बाइनरी इनपुट ग्रहण करता हो तथा इसका 2's काम्प्लीमेंट प्रदान करता हो।
- 5. (i) Name various modes used to transfer the data between CPU and I/O devices. (7)
 - (ii) Simplify the following expression using K-map:

$$Y = m_0 + m_1 + m_3 + m_7 + m_8 + m_9 + m_{11} + m_{15}.$$
(5)

(iii) Prove the relationship:

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC = AB + BC + CA.$$
 (3)

(i) सीपीयू तथा आई/ओ युक्तियों के बीच डाटा अन्तरण में प्रयुक्त विभिन्न प्रणालियों के नाम लिखिए। (ii) के-मैप का उपयोग करते हुए निम्नलिखित व्यंजक को सरल कीजिए:

$$Y = m_0 + m_1 + m_3 + m_7 + m_8 + m_9 + m_{11} + m_{15}.$$

(iii) निम्नलिखित सम्बन्ध को सिद्ध कीजिए :

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC = AB + BC + CA$$
.

- 6. (i) Implement the expression using a multiplexer: (5) $f(A, B, C, D) = \sum m(0, 2, 3, 6, 8, 9, 12, 14).$
 - (ii) Justify the statement "J-K flip-flop is a universal flip-flop."

(5)

- (iii) Design a 3:8 decoder using basic logic gates. (5)
 - (i) एक मल्टीप्लेक्सर का उपयोग करते हुए व्यंजक को क्रियान्वित कीजिए :

$$f(A, B, C, D) = \Sigma m(0, 2, 3, 6, 8, 9, 12, 14).$$

- (ii) ''जे-के फ्लिप-फ्लॉप एक यूनिवर्सल फ्लिप-फ्लॉप है'', इस कथन का औचित्य बताइए।
- (iii) बेसिक लॉजिक गेट का उपयोग करते हुए एक 3:8 डिकोडर डिजाइन कीजिए।
- 7. (i) Explain De Morgan's theorem. Prove the following using De Morgan's theorem:

(a)
$$AB + CD = \overline{\overline{AB.CD}}$$
.

(b)
$$(A + B) \cdot (C + D) = \overline{(A + B) + \overline{(C + D)}}$$
. (8)

- (ii) Implement Ex-OR and Ex-NOR gate using only NOR (7) gates.
- (i) डी-मॉर्गन प्रमेय का वर्णन कीजिए। डी-मॉर्गन प्रमेय का प्रयोग करते हुए निम्नलिखित को सिद्ध कीजिए:

$$(\mathfrak{F}) AB + CD = \overline{\overline{AB}.\overline{CD}}.$$

$$(\overline{a}) (A + B) \cdot (C + D) = \overline{(\overline{A + B}) + \overline{(C + D)}}$$

- (ii) केवल एनओआर गेट का प्रयोग करते हुए एक्स-ओआर तथा एक्स-एनओआर गेट को क्रियान्वित कीजिए।
- 8. (i) Explain instruction cycle in detail. Also draw the flow chart for the same. (8)
 - (ii) Name various modes used to transfer data between CPU and I/O devices. **(7)**
 - (i) निर्देश चक्र का विस्तारपूर्वक वर्णन कीजिए। साथ ही इसके लिए प्रवाह-संचित्र भी खींचिए।
 - (ii) सीपीयू तथा आई/ओ युक्तियों के मध्य डाटा अन्तरण में प्रयुक्त विभिन्न प्रणालियों के नाम लिखिए।
- 9. (i) Draw the circuit of an S-R flip-flop. From it derive the circuit of a D flip-flop and explain its truth table.

- (ii) Draw the circuit of a 2 to 4 decoder and explain its functions. (5)
- (i) एक एस-आर फ्लिप-फ्लॉप परिपथ बनाइए। इससे डी फ्लिप-फ्लॉप का परिपथ व्युत्पन्न कीजिए तथा इसकी सत्यता सारणी की व्याख्या कीजिए।
- (ii) 2 से 4 डिकोडर का परिपथ बनाइए तथा इसके कार्यों का वर्णन कीजिए।