

Total Pages: 4

GSE/D-19

782

ALGEBRA

Paper: BM-III

Time: Three Hours]

[Maximum Marks: 40

Note: Attempt five questions in all. Question No. 1 is compulsory. Select one question from each section.

Compulsory Question

1. (a) Prove that every orthogonal matrix is non-singular.

11/2

- (b) Prove that the set of vectors (1, 2, 0), (0, 3, 1) and (-1, 0, 1) is linearly independent.
- (c) Prove that the quadratic form $q = x_1^2 + x_2^2 + x_3^2$ is positive definite.
- (d) Show that every identity matrix of order $n \ge 2$ is derogatory. 1½
- (e) If α , β , γ are roots of equation $x^3 + px^2 + qx + r = 0$ then find $\sum \frac{1}{\alpha}$.

SECTION-I

2. (a) Prove that every square matrix A can be expressed in one and only one way as P + iQ, where P and Q are Hermitian matrices.

782/8,000/KD/1044

[P.T.O. 23/11

(b) For the matrix A, find non-singular matrices P and Q

such that PAQ is in normal form
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1 \end{bmatrix}$$
;

hence find the rank of A.

4

- 3. (a) Prove that the characteristic roots of a real symmetric matrix are all real.
 - (b) Prove that $A = \begin{bmatrix} 2 & 6 & 1 \\ 0 & 1 & -6 \\ 3 & 4 & 2 \end{bmatrix}$ satisfies its characteristic

equation. Also find its inverse, if it exists.

1

SECTION-II

4. (a) Check whether the following system of equations is consistent or not. Solve if it is consistent.

$$4x + 3y + 2z = -7;$$

 $2x + y - 4z = -1;$
 $x + 2y + z = 1.$

- (b) Prove that the absolute value of each characteristic root of unitary matrix is unity.
- 5. (a) For what value of λ , the equations

$$x + y + z = 1$$

$$x + 2y + 4z = \lambda$$

$$x + 4y + 10z = \lambda^{2}$$

have a solution and solve them completely in each case.

4

(b) Diagonalize the quadratic form

$$x_1^2 + 2x_3^2 - 7x_3^2 - 4x_1x_2 + 8x_1x_3$$
.

Also, find the rank, index, signature and equations of transformation.

SECTION-III

- 6. (a) Find the remainder in the division of $x^3 + 3px + q$ by $(x a)^2$, and deduce that it has two equal roots if $q^2 + 4p^3 = 0$.
 - (b) If b and c are real and $2 \sqrt{-3}$ is a root of the equation $x^3 + x^2 + bx + c = 0$, what are the other roots and what is the value of c?
- 7. (a) Find the condition that the sum of two roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ is equal to zero.

(b) If α , β , γ are the roots of the cubic $x^3 + 3x + 2 = 0$, find the equation whose roots are $(\alpha - \beta)$ $(\alpha - \gamma)$, $(\beta - \gamma)$ $(\beta - \alpha)$, $(\gamma - \alpha)$ $(\gamma - \beta)$. Hence show that the given cubic has two imaginary roots.

SECTION-IV

- 8. (a) Solve the equation $28x^3 90x^2 + 1 = 0$ by Cardan's method. $28x^3 90x^2 + 1 = 0$ by Cardan's
 - (b) Apply Descarte's method to solve the equation $x^4 3x^2 42x 40 = 0$.

782/8,000/KD/1044

3

[P.T.O.

- 9. (a) Solve $x^4 + 2x^3 7x^2 8x + 12 = 0$ by Ferrari's method.
 - (b) Show that the equation $x^7 + x^4 + 8x + k = 0$ has at least four imaginary roots for all values of k.