Total Pages: 3

GSE/D-17

784

CALCULUS

Paper: BM-112

Time: Three Hours]

[Maximum Marks: 40

Note: Attempt five questions in all. Question No. 1 is compulsory. Select one question from each section.

Compulsory Question

1. (a) Evaluate $\lim_{x\to 0} \frac{x}{|x|}$.

(b) If $y = ae^{mx} + be^{-mx}$, prove that $y_2 - m^2y = 0$.

(c) Define Asymptotes with example. 1

(d) What is a Singular point?

(e) Find the length of a loop of the curve $r = a(\theta^2 - 1)$.

SECTION-I

2. (a) Discuss the continuity and differentiability of the function f(x) = |x-1| + |x-2| in the interval [0, 3].

(b) If $y = \left[\log\left(x + \sqrt{1 + x^2}\right)\right]^2$, prove that

$$(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0.$$

784/14.200/KD/81

[P.T.O.

- 3. (a) Expand sin x and cos x in powers of x, and hence find cos 18° upto four decimal places.

 4
 - (b) Find the approximate change in the value of $f(x) = 5x^3 3x^2 + 7x 8$, when x changes from 3 to 3.001.

SECTION-II

- 4. (a) Find all the asymptotes of the curve $(x+y)^2 (x+y+2) x 9y + 2 = 0.$
 - (b) Find the asymptotes of the curve

$$r^2 = a^2(\sec^2\theta + \csc^2\theta).$$

- 5. (a) Show that in an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, the radius of curvature at the end of the major axis is equal to the semi-latus rectum of the ellipse.
 - (b) Show that every point, in which the sine curve $y = c \sin \frac{x}{c}$ meets the axis of x, is a point of inflexion.

SECTION-III

- 6. (a) Trace the curve $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$. 4
 - (b) Obtain a reduction formula for $\int x^n \cos x \, dx$, and hence evaluate $\int x^3 \cos x \, dx$.

784/14,200/KD/81

4

- 7. (a) Find that the loop of the curve $x = t^2$, $y = t \frac{1}{3}t^3$ is of length $4\sqrt{3}$.
 - (b) Find the intrinsic equation of the cardioid $r = a(1 \cos \theta).$

SECTION-IV

- 8. (a) Trace the curve $ay^2 = x^2(a x)$, and show that the area of the loop is $\frac{8}{15}a^2$.
 - (b) Find the area common to the circle r = a and the cardioid $r = a(1 + \cos \theta)$.
- 9. (a) The circle $x^2 + y^2 = a^2$ is revolved about the x-axis. Find the volume of the sphere so formed.
 - (b) Find the surface of the solid generated by the revolution of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ about the x-axis.