Roll No.

Total Pages: 4

GSE/M-20

1493

ELECTRONICS-I

(Electronic Devices and Circuits-II)
Paper–I

Time: Three Hours] [Maximum Marks: 40

Note: Attempt *five* questions in all, selecting *one* question from each unit. Question No. 1 is compulsory.

Compulsory Question

- 1. (a) How a FET can be used as a voltage-variable resistance?
 - (b) What is the condition for thermal stability?
 - (c) What is the need of coupling in a multistage amplifier?
 - (d) What is thermal runaway? How is it related to the biasing of a transistor? $(2\times4=8)$

UNIT-I

2. (a) Show that the stability factor for the collector to base

bias is
$$s = \frac{(1+\beta)}{\left[1 + \frac{\beta R_c}{R_B + R_c}\right]}$$
 and $s' = \frac{-\beta . s}{(1+\beta) (R_B + R_c)}$.

5

(b) Explain why biasing is necessary in an amplifier? 3

- 3. (a) For the collector to base bias circuit, the BJT used is specified to have β values in the range of 20 to 200. If feedback resistance is 100 k Ω and emitter resistance is 1 k Ω , for the two extreme values of β (20 & 200), find V_E , I_E and V_B .
 - (b) The operating point is required to be selected in the middle of load line in an amplifier circuit. Why? What are the reasons due to which Q-point gets shifted? Explain.

UNIT-II

- 4. (a) A 50-NPN transistor is used in self-bias CE amplifier, having β = 50 at room temperature. The circuit has R_1 = 90 k Ω and R_2 = 10 k Ω and R_E = 1.5 k Ω . The values of other components are adjusted to have the collector current I_C = 2 mA. Calculate the values of s, s', s''.
 - (b) Why thermal runaway cannot take place, if $V_{CE} < \frac{V_{CC}}{2}$.

3

- 5. (a) Draw a self-bias circuit. Explain qualitatively why such a circuit is an improvement on the fixed bias circuit, as for as stability is concerned. How is the load line drawn for a self-bias circuit?
 - (b) The mid frequency gain of a RC coupled amplifier is 100. The values of higher and lower cut off frequencies are 100 kHz and 100 H_Z, respectively. Find the frequency at which the gain reduces to 80.

3

UNIT-III

- 6. (a) The h-parameters of the transistors used in two stage RC coupled amplifier are $h_{fe} = 400$, $h_{ie} = 8 \text{ k}\Omega$. If the shunt capacitance at high frequency is 500 pf, coupling capacitance is 0.5 μ F and R_L = 15 k Ω , calculate the lower and higher cut off frequencies of the amplifier. The source may assume to be negligibly small.
 - (b) Outline the general method for obtaining the high frequency response of two interacting amplifier stages.

7. (a) Sketch the response of an amplifier to a low frequency square wave. What is tilt and how is it related to the

low 3–dB frequency $f_{\rm I}$?

(b) For an RC coupled amplifier, the mid frequency gain is 200. If the gain falls by 6 dB at the lower cut off frequency, calculate the gain at the cut-off frequency in dB.

UNIT-IV

- **8.** (a) If two identical FET, are connected in parallel then prove that the effective transconductance is doubled and drain resistance is halved. The amplification factor remains unchanged.
 - (b) A common source amplifier uses FET having $\gamma_d = 10$ k Ω and $\mu = 16$. Calculate the voltage and output resistance of the amplifier for load resistance equal to (i) $100 \text{ k}\Omega$ (ii) $200 \text{ k}\Omega$ (iii) $1 \text{ M}\Omega$.

- 9. (a) A common source FET amplifier uses load resistance $R_L = 100 \text{ k}\Omega$ and an unbypassed resistance R_s connected between source and ground. The γ_d of FET is 200 k Ω and $g_m = 0.1 \text{ m}\Omega^{-1}$. Compute the voltage gain and output resistance of the amplifier for R_s equal to: (i) 5 k Ω (ii) 50 k Ω (iii) 20 k Ω .
 - (b) Draw the small signal model of a FET and show that the FET behaves as a voltage controlled current source (VCCS).