Roll No.

Total Pages: 3

502

BAE/A-20

MATHEMATICS

(Algebra and Trigonometry)

Paper: BM-101

Time: Three Hours] [Maximum Marks: 45

Note: Attempt *five* questions, selecting at least *one* question from each section.

SECTION-I

- Define Symmetric matrix. If A is a square matrix then 1. prove that A + A' is symmetric. 5
 - (b) Show that $\begin{vmatrix} 0 & 6 & 8 \\ -6 & 0 & -5 \\ 9 & 5 & 0 \end{vmatrix}$ is skew symmetric. 4
- 2. (a) Find the rank of $\begin{bmatrix} 0 & -1 & 2 \\ 4 & 3 & 1 \\ 4 & 2 & 2 \end{bmatrix}$. 4
 - Show that the vectors (3, 1, -4) (2, 2, -3) form a linearly (b) independent set.
- Find the eigen values and eigen vectors of matrix $\begin{vmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{vmatrix}$. 3.

9

9

9

SECTION-II

- 4. (a) Solve the equation $x^4 20x^3 + 140x^2 400x + 384 = 0$, two roots being 2 and 8.
 - (b) Find an equation whose roots are equal in magnitude but opposite in sign to the roots of the equation

$$x^5 + 11x^4 + 7x^3 - 16x^2 - 12x + 15 = 0.$$

5. Solve the equation $x^3 - 12x - 65 = 0$ by Cardon's method.

SECTION-III

- **6.** (a) Every cyclic group is an abelian group. Prove it. 5
 - (b) If H_1 and H_2 are two subgroups of G, then show that $H_1 \cap H_2$ is also a subgroup of G.
- 7. (a) Prove that every subgroup of an abelian group is always normal.
 - (b) Show that Z (the set of all integers) is not a group w.r.t. multiplication.
- 8. Define a ring and give an example of
 - (a) a non-commutative ring with unity.
 - (b) a commutative ring with unity.

SECTION-IV

- 9. (a) Prove that $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{4}$.
 - (b) Using DeMoivre's theorem, solve the equation $x^4 + x^3 + x^2 + x + 1 = 0$.

502//KD/139

10. (a) Show that $\log (1 + \cos 2\theta + i \sin 2\theta) = \log (2 \cos \theta) + i\theta$.

(b) Express $\log [\log (\cos \theta + i \sin \theta)]$ in the form A + iB.

4