BAM/A-20
547
MATHEMATICS
(Advanced Calculus)
Paper: BM-201
Time : Three Hours]
[Maximum Marks : 45
Note : Attempt five questions in all, selecting at least one question from each section.

SECTION-I

1. (a) Show that

$$
\operatorname{Lim}_{n \rightarrow \infty}\left[\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdots \cdots \cdot \frac{n}{n-1}\right]^{1 / n}=1 .
$$

(b) Prove that the sequence $\left\langle a_{n}\right\rangle$ defined by $a_{1}=1$ and $a_{n}=\sqrt{2+a_{n-1}}$ converges to the positive root of the equation $x^{2}-x-2=0$. $41 / 2$
2. (a) Use Cauchy's general principle of convergence to show that the sequence $<a_{n}>$ defined by

$$
a_{n}=1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}
$$

does not converge.
(b) Test the convergence of the series

$$
\sum_{n=1}^{\infty}\left[\sqrt{n^{4}+1}-\sqrt{n^{4}-1}\right] .
$$

3. (a) Discuss the convergence of the series

$$
\begin{equation*}
1+\frac{1}{2} x+\frac{1.3}{2.4} x^{2}+\frac{1.3 .5}{2.4 .6} x^{3}+\cdots \cdots \tag{1⁄2}
\end{equation*}
$$

(b) Using Cauchy's Integral test, discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}, p>0$.

SECTION-II

4. (a) Prove that if a function f is continuous on a closed interval $[a, b]$, then it is uniformly continuous on $[a, b]$.
$41 / 2$
(b) Verify Lagrange's Mean value theorem for $f(x)=\sin x$

$$
\text { in }\left[\frac{\pi}{2}, \frac{5 \pi}{2}\right] .
$$

$41 / 2$
5. (a) Show that

$$
\log (x+h)=\log x+\frac{h}{x}-\frac{h^{2}}{2 x^{2}}+\cdots+(-1)^{n-1} \frac{h^{n}}{n(x+\theta h)^{n}} .
$$

(b) Show that the function

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y}{\sqrt{x^{2}+y^{2}}} ; & (x, y) \neq(0,0) \\
0 & ; \\
(x, y)=(0,0)
\end{array}\right.
$$

is continuous at $(0,0)$.
6. (a) By changing the independent variable u and v to x and y by means of relation $x=u \cos \alpha-v \sin \alpha$, $y=u \sin \alpha+v \cos \alpha$; show that

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}} .
$$

(b) Expand $x^{2} y+3 y-2$ in powers of $(x-1)$ and $(y+2)$ using Taylor's theorem upto third degree terms.

SECTION-III

7. (a) Find the envelope of the family of lines $\frac{x}{a}+\frac{y}{b}=1$ where a and b are connected by the relation $a^{n}+b^{n}=c$ and c is constant. $41 / 2$
(b) Examine for maximum and minimum values of the function $f(x, y)=x y(a-x-y)$. $41 / 2$
8. (a) Find the maximum and minimum distance of the point $(3,4,12)$ from the sphere $x^{2}+y^{2}+z^{2}=1$ using Lagrange's method of multipliers. $41 / 2$
(b) Evaluate $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{1}{x^{2}}-\cot ^{2} x\right)$. $41 / 2$

SECTION-IV

9. (a) Show that $\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta=\frac{\pi}{\sqrt{2}}$. $41 / 2$
(b) Evaluate $\iiint_{x^{2}+y^{2}+z^{2} \leq 1}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$.
10. (a) Using Dirichlet's integral, find the volume bounded by the surface $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{4}}{c^{4}}=1 . \quad 41 / 2$
(b) Evaluate the integral

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} d y d x
$$

by changing the order of integration. $41 / 2$

