Roll No.

Total Pages: 4

BAM/A-20

548

MATHEMATICS

(Differential Equations)

Paper: BM-202

Time: Three Hours] [Maximum Marks: 45

Note: Attempt *five* questions in all, selecting at least *one* question from each section.

SECTION-I

1. (a) Solve
$$2x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + (1 - x^2)y = 0$$
 in series. $4\frac{1}{2}$

(b) Use Jacobi's series to show that

$$[J_0(x)]^2 + 2[J_1(x)]^2 + 2[J_2(x)]^2 + \dots = 1.$$
 4¹/₂

2. (a) Solve the Legendre equation

$$(1 - x^2) \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + n(n+1)y = 0$$

by changing it to a hypogeometric equation. 4½

(b) Find the eigen functions of the following Sturm Liouville problem and verify the orthogonality: $y'' + \lambda y = 0$, y(0) = 0 and y'(l) = 0. 4½

SECTION-II

3. (a) If $\alpha[f(t)] = F(S)$ then show that

$$\alpha[t^n f(t)] = (-1)^n \frac{d^n}{dS^n} [F(S)],$$

where n = 1, 2, 3,

41/2

(b) Find the inverse Laplace transform of the function

$$\frac{S}{(S^2+a^2)^3}$$
. 4½

4. (a) Convert the differential equation

$$f''(t) - 3f'(t) + 2f(t) = 4 \sin t$$

into an integral equation where $f(0) = 1$, $f'(0) = -2.4\frac{1}{2}$

(b) Solve
$$t \frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} + ty = \sin t$$
 when $y(0) = 1$. $4\frac{1}{2}$

SECTION-III

5. (a) Eliminate the arbitrary functions and hence obtain the partial differential equation

$$Z = f(x \cos \alpha + y \sin \alpha - at) + \phi(x \cos \alpha + y \sin \alpha + at).$$

$$4\frac{1}{2}$$

(b) Solve the partial differential equation

$$\left(\frac{b-c}{a}\right)yzp + \left(\frac{c-a}{b}\right)zxq = \frac{a-b}{c}xy.$$
 4½

6. (a) Obtain the complete integral of $z^2(p^2 + q^2) = x^2 + y^2$.

(b) Solve
$$(D^2 - D'^2 + D + 3D' - 2)z = e^{x - y} - x^2y$$
. 4¹/₂

7. (a) Solve

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} + nz = n \left(x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} \right) + x^{2} + y^{2} + x^{3}.$$

 $4\frac{1}{2}$

(b) Solve $r - t \cos^2 x + p \tan x = 0$.

 $4\frac{1}{2}$

SECTION-IV

- 8. (a) Prove that variation of the functional I[y(x)] is equal to $\frac{\partial}{\partial \alpha} I[y(x) + \alpha \delta y(x)] \text{ at } \alpha = 0, \text{ for fixed } y \text{ and } \delta y \text{ and } different values of parameter } \alpha.$
 - (b) Find the extremals of the functional

$$\int_{\theta_1}^{\theta_2} \sqrt{(r^2 + r'^2)} d\theta$$
, where $r = r(\theta)$. 4½

9. Light travels in a medium from one point to another so that the time of travel is given by $\int \frac{dS}{V(x,y)}$ where S is the arc

length and V(x, y) is the velocity of light in the medium is maximum. Show that the path travelled is given by

$$V^{2} \frac{d^{2} y}{dx^{2}} + \left[1 + \left(\frac{dy}{dx} \right)^{2} \right] \frac{dV}{dy} - \frac{dy}{dx} \left[1 + \left(\frac{dy}{dx} \right)^{2} \right] \frac{dV}{dx} = 0.$$
 4½

- 10. (a) Find the shortest distance between the circle $x^2 + y^2 = 1$ and the straight line x + y = 4. $4\frac{1}{2}$
 - (b) Test for an extremum, the functional

$$I[y(x)] = \int_{0}^{2} (e^{y'} + 3) dx, y(0) = 0, y(2) = 1.$$
 4½