MATHEMATICS

(Differential Equations)
Paper: BM-202

Time : Three Hours]
[Maximum Marks : 45

Note : Attempt five questions in all, selecting at least one question from each section.

SECTION-I

1. (a) Solve $2 x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\left(1-x^{2}\right) y=0$ in series. $\quad 41 / 2$
(b) Use Jacobi's series to show that

$$
\left[\mathrm{J}_{0}(x)\right]^{2}+2\left[\mathrm{~J}_{1}(x)\right]^{2}+2\left[\mathrm{~J}_{2}(x)\right]^{2}+\ldots \ldots . .=1 . \quad 41 / 2
$$

2. (a) Solve the Legendre equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0
$$

by changing it to a hypogeometric equation.
(b) Find the eigen functions of the following Sturm Liouville problem and verify the orthogonality :

$$
y^{\prime \prime}+\lambda y=0, y(0)=0 \text { and } y^{\prime}(l)=0 . \quad 41122
$$

SECTION-II

3. (a) If $\alpha[f(t)]=\mathrm{F}(\mathrm{S})$ then show that

$$
\alpha\left[t^{n} f(t)\right]=(-1)^{n} \frac{d^{n}}{d \mathrm{~S}^{n}}[\mathrm{~F}(\mathrm{~S})],
$$

where $n=1,2,3, \ldots$.
(b) Find the inverse Laplace transform of the function

$$
\frac{\mathrm{S}}{\left(\mathrm{~S}^{2}+a^{2}\right)^{3}} .
$$

4. (a) Convert the differential equation

$$
f^{\prime \prime}(t)-3 f^{\prime}(t)+2 f(t)=4 \sin t
$$

into an integral equation where $f(0)=1, f^{\prime}(0)=-2.41 / 2$
(b) Solve $t \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+t y=\sin t$ when $y(0)=1$. $41 / 2$

SECTION-III

5. (a) Eliminate the arbitrary functions and hence obtain the partial differential equation
$\mathrm{Z}=f(x \cos \alpha+y \sin \alpha-a t)+\phi(x \cos \alpha+y \sin \alpha+a t)$.
$41 / 2$
(b) Solve the partial differential equation

$$
\begin{equation*}
\left(\frac{b-c}{a}\right) y z p+\left(\frac{c-a}{b}\right) z x q=\frac{a-b}{c} x y . \tag{1⁄2}
\end{equation*}
$$

6. (a) Obtain the complete integral of $z^{2}\left(p^{2}+q^{2}\right)=x^{2}+y^{2}$.

$$
41 / 2
$$

(b) Solve $\left(\mathrm{D}^{2}-\mathrm{D}^{\prime 2}+\mathrm{D}+3 \mathrm{D}^{\prime}-2\right) z=e^{x-y}-x^{2} y . \quad 41 / 2$
7. (a) Solve

$$
x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}+n z=n\left(x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}\right)+
$$

$$
x^{2}+y^{2}+x^{3}
$$

$41 / 2$
(b) Solve $r-t \cos ^{2} x+p \tan x=0$. $\quad 41 / 2$

SECTION-IV

8. (a) Prove that variation of the functional $\mathrm{I}[y(x)]$ is equal to

$$
\begin{aligned}
& \frac{\partial}{\partial \alpha} \mathrm{I}[y(x)+\alpha \delta y(x)] \text { at } \alpha=0, \text { for fixed } y \text { and } \delta y \text { and } \\
& \text { different values of parameter } \alpha .
\end{aligned}
$$

(b) Find the extremals of the functional

$$
\int_{\theta_{1}}^{\theta_{2}} \sqrt{\left(r^{2}+r^{\prime 2}\right)} d \theta, \text { where } r=r(\theta)
$$

9. Light travels in a medium from one point to another so that the time of travel is given by $\int \frac{d \mathrm{~S}}{\mathrm{~V}(x, y)}$ where S is the arc
length and $\mathrm{V}(x, y)$ is the velocity of light in the medium is maximum. Show that the path travelled is given by

$$
\mathrm{V}^{2} \frac{d^{2} y}{d x^{2}}+\left[1+\left(\frac{d y}{d x}\right)^{2}\right] \frac{d \mathrm{~V}}{d y}-\frac{d y}{d x}\left[1+\left(\frac{d y}{d x}\right)^{2}\right] \frac{d \mathrm{~V}}{d x}=0 . \quad 41 / 2
$$

10. (a) Find the shortest distance between the circle $x^{2}+y^{2}=1$ and the straight line $x+y=4 . \quad 41 / 2$
(b) Test for an extremum, the functional

$$
\mathrm{I}[y(x)]=\int_{0}^{2}\left(e^{y^{\prime}}+3\right) d x, y(0)=0, y(2)=1 .
$$

