Q.8. a) Explain the working relaxation oscillator using UJT. 5

 Explain the working of a digital CRO with the help of a block diagram.

SECTION-E

- Draw Energy band diagram of p-n junction at equilibrium, forward bias condition and reverse bias condition.
- 7. How can you check the polarity of the diode, if the mark on its body is rubbed off or not visible? 3
- Sketch a circuit that will clip all levels of a sinusoidal signal above-5V. The peak to peak voltage of sinusoidal signal is 20V
- 9. IN what ways is the construction of a depletiontype MOSFET similar to that of a JFET? In what ways is it different?
- 10. What is the difference between a summing amplifier and an adder circuit?

Roll No.

Total No. of Page: 4

BT-1/DX: 8022

EL-101-E: Elements of Electronics Engineering

Time: Three Hours

Maximum Marks: 75

Note:- Attempt any FOUR questions, with at least ONE from each section A, B, C and D. Section E is compulsory.

SECTION-A

- Q.1. a) Explain the mechanisms of breakdown in p-n diodes. Describe the use of Zener diode as a voltage regulator. 7.5
 - b) A specimen of intrinsic Germanium at 300 °K, having a concentration of carriers of 2.5x10¹³ cm³ is doped with impurity atoms of one for every million germanium atoms. Assuming that all the impurity atoms are ionized and that the concentration of Ge atoms is 4.4x 10²² cm³, find the resistivity of doped material.

(μ_n for Ge is 3600 cm²/volt-sec).

Q.2. a) Draw the circuit of a Full wave and bridge rectifier and centre tap transformer rectifiers, with the help of waveforms explain their operation.

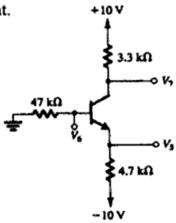
8022

9600

Contd.

7.5

8022 4


Also discuss their diodes PIV values. 7.5

b) What value of series resistance is required when 10W, 10V, 1000mA zener diodes are connected in series to obtain 20 V regulated output from a 35 V dc source? 7.5

SECTION-B

- Q.3. a) Define α of a transistor. Show that it is always less than unity. 7.5

 Show that $\beta = \frac{\alpha}{1-\alpha}$
 - b) The transistor in the circuit of figure 1 has $\beta = 80$ exhibits a V_{BE} of 0.7V. Find all the terminal voltage and current. +10V 7.5

- Q.4. a) Explain the working of a transistor as a switch. 5
 - b) Draw the various basing circuits and explain their operations. Calculate the stability factor in each case. Why emitter divider bias is better than the two other techniques. 7.5

8022 2 Contd.

SECTION-C

- Q.5. a) An amplifier with open loop voltage gain A_V = 1000±100 is available. It is necessary to have an amplifier whose voltage gain varies by no more than 0.1%. Find the reverse transmission factor β of the feedback network used. 7.5
 - b) Discuss IC741 with its complete pin diagram. 7.5
- Q.6. a) Draw the circuit of OPAMP as following and derive its output in case of its use as
 - i) Scale changer
 - ii) Differentiator
 - iii) Draw the inverting and non-inverting amplifier circuits of an Opamp in closed loop configurations. Obtain an expression for closed loop gain in these circuits.

SECTION-D

Q.7. a) Prove that the transconductance g_m of a JFET is given by

$$g_{\rm m} = \frac{2}{|V_P|} \sqrt{I_{DS}} \, \overline{I_{DSS}}$$

Where V_p = Pinch off voltage, I_{DS} = Drain current I_{DSS} = Maximum value of I_{DS} corresponding to V_{GS} = 0 volts.

b) Discuss how JFET acts as a voltage amplifier.

Draw the waveforms.

8022 3 Contd.