http://www.kuonline.in

Roll No.

Total No. of Pages: 2

BT-1/D11

7501

Mathematics-I

Paper: MATH-101 E

Time: Three Hours]

[Maximum Marks: 100

Note :- Attempt FIVE questions, selecting at least ONE question from each Unit.

UNIT-I

- I. (a) Expand $\tan\left(\frac{\pi}{4} + x\right)$, by Taylore's series and hence find tan $(46^{\circ}5^{\circ})$ correct to four decimal places.
 - (b) Show that the radius of curvature at an end of the major axis of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to the semi-latus rectum.
- 2. (a) Find the asymptotes of: $(x + y)^2 (x \div 2y + 2) = (x \div 9y - 2).$
 - (b) Trace the curve : $y^{2}(x-a) = x^{2}(x+a).$

7501

UNIT-II

- 3. (a) If $z = x \phi \left(\frac{y}{x}\right) + \psi \left(\frac{x}{y}\right)$, prove that, by using Euler's Theorem, $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} \div y^2 \frac{\partial^2 z}{\partial y^2} = 0$
 - (b) Transform the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ into polar coordinates.

4. (a) In estimating the cost of a pile of bricks measured as 6m × 50 m × 4m. The tape is stretched 1% beyond the standard length. If the count is 12 bricks in 1m³ and bricks cost Rs. 600/- per thousand. Find the approximate error in cost.

(b) Evaluate $\int_{0}^{x} \log(1 + \alpha \cos x) dx$, using the method of differentiation under the sign of integration.

UNIT-III

- 5. (a) Change the order of integration and then evaluate $\int_{0}^{40} \int_{\frac{\pi}{4a}}^{2\sqrt{a}x} dy dx$.
 - (b) Find, by triple triangle, the volume of the sphere $x^2 + y^2 + z^2 = a^2$.
- 6. (a) Calculate, by double integral, the volume generated by the revolution of the cardioid $r = a (1 \cos \theta)$ about its axis.
 - (b) Express $\int_0^t x^m (1-x^n)^p dx$, in Terms of gamma function and evaluate $\int_0^t x^n (1-x^n)^{np} dx$.

UNIT-IV

- 7. (a) Find a unit vector normal to the surface $x^3 + y^3 \div 3xyz = 3$ at the point (1,3,-1). http://www.kuonline.in
 - (b) Prove that carl:

7501

$$(\overline{F} \times \overline{G}) = \overline{F} \cdot \operatorname{div} \overline{G} - \overline{G} \operatorname{div} \overline{F} + (\overline{G} \cdot \nabla) \overline{F} - (\overline{F} \cdot \nabla) \overline{G}.$$

8. (a) Using Green's Theorem, evaluate :-

$$\oint_C (y-\sin x) dx + \cos x dy, \text{ where } C \text{ is the plane triangle}$$

enclosed by the line
$$y = 0$$
, $x = \frac{\pi}{2}$ and $y = \frac{2}{\pi} x$.

(b) Evaluate $\iint (xdy dz + y dz dx + z dx dy)$ of the surface of the sphere of radius a.

Contd.