Roll No. Total Pages : 03

BT-4/M-20

34036

THERMODYNAMICS OF BIOPROCESS BTT-210E

Time: Three Hours [Maximum Marks: 100]

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

- (a) Define heat capacity at constant pressure and volume and their relationship. Also explain first law of thermodynamics.
 - (b) Define Thermodynamics parameter internal energy, enthalpy, their relationship and their significance.

10

2. Write notes on the following :

20

- (a) Entropy and life processes
- (b) Third law of thermodynamics.

(2)L-34036

1

Unit II

3.	(a)	What do you understand by steady state condition?						
	()	Explain free energy and its relationship with						
		equilibrium constant. 10						
	(b)	Derive Gibbs-Duhan equation and explain their						
		application. 10						
4.	Explain the following: 20							
	(a)	Structural transition in biological molecules						
	(b)	Independent and non-cooperative binding.						
Unit III								
5.	(a)	Describe Onsager's phenomenological coefficient of						
		its reciprocal relation. 10						
	(b)	Explain non-equilibrium thermodynamics and its						
		biological application. 10						
6.	(a)	What are coupled reaction ? Illustrate with suitable						
		examples. Explain the concept of group transfer						
		potential. 10						
	(b)	Write down the concept of flexed forces. 10						
(2)L	-34036	2						

Unit IV

7.	(a)	Describe th	ermodynamics	of oxio	dative	
	phosphorylation.					
	(b)	Write down Pri	igogine-Curie law	<i>7</i> .	10	
8.	Briefly discuss the following:					
	(a) Thermodynamic properties of water(b) Biological clocks and biochemical oscillation					