Roll No. Total Pages : 03

BT-4/M-20
 FLUID MECHANICS-II
 CE-206-E

34020

Time : Three Hours]
[Maximum Marks : 100

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks. Assume any missing data.

Unit I

1. (a) Derive an equation for laminar flow around a sphere i.e. Stokes' law used in the fluid mechanics. 10
(b) What do you understand by Couette flow and Hagen-Poiseulle flow equations ? Differentiate between them. 10
2. (a) Define Reynolds' number. Draw a graph of variation of C_{d} versus Reynolds' number for a cylinder. 10
(b) A compound pipe system consists of 1800 m of $0.5 \mathrm{~m}, 1400 \mathrm{~m}$ of 0.40 m and 700 m of 0.30 m new CI pipes connected in the series. Convert the system to an equivalent length of 0.4 m and equivalent size of pipe 3600 m long. 10
(2)L-34020

Unit II

3. (a) Calculate the total drag, shear drag and pressure drag exerted on 1 m length circular cylinder which has a diameter equal to 40 mm , air density $1.3 \mathrm{~kg} / \mathrm{m}^{3}$ flowing past the cylinder with velocity $4 \mathrm{~m} / \mathrm{min}$. The total drag coefficient is equal to 1.4 and shear drag coefficient is equal to 0.19 . $\mathbf{1 0}$
(b) What is meant by Magnus effect ? How does circulation originate around an airfoil ? 10
4. (a) Show that for a trapezoidal channel of given area of flow, the condition of maximum flow requires that hydraulic mean depth is equal to one half of depth of flow.
(b) Explain the working of standing wave flume with a neat sketch.

Unit III

5. (a) What do you mean by Mach number ? Explain its significance in compressible fluid studies. $\mathbf{1 0}$
(b) A volume of air at atmospheric pressure of $101.04 \mathrm{kN} / \mathrm{m}^{2}$ absolute and $24^{\circ} \mathrm{C}$ is compressed adiabatically to a gage pressure of 3.09×10^{7} $\mathrm{N} / \mathrm{m}^{2}$. Calculate the final volume.
6. (a) How to measure discharge of a compressible fluid ? Explain its procedure.

10
(b) A rocket travels in air of pressure $1.033 \mathrm{~kg} / \mathrm{cm}^{2}$ at $15^{\circ} \mathrm{C}$ at a velocity of $1750 \mathrm{~km} / \mathrm{hour}$. Find the Mach number and the Mach angle. Take $k=1.4$ and $\mathrm{R}=29.27 \mathrm{~m} /{ }^{\circ} \mathrm{K}$. 10

Unit IV

7. (a) A water turbine develops 134 kW at 235 rpm under a head of 17 m . Determine scale ratio and speed of a similar machine which will generate 600 kW when working under a head of 26 m .10
(b) Explain with sketches functions of scroll casing, stay vanes and guide vanes for a reaction turbine.
8. (a) Explain the working principle of reciprocating pump with sketches.
(b) What are different efficiencies of centrifugal pump ?

Explain them briefly.
10

