http://www.kuonline.in

Roll No. Printed Pages: 2

8503

BT-5/D-13

AUTOMATATHEORY

Paper-CSE-305 Opt. (II)

Time allowed: 3 hours]

[Maximum marks: 100

Note: Attempt any five questions.

- Give deterministic finite automata for the following language over alphabet {0, 1}
 - Strings starting with a leading 0 and not containing consecutive 1s.
 - (ii) Strings with even number of 0s and odd number of ls.
 - (iii) Strings containing third symbol from the right as 1.
 - All strings that have exactly one double letter in them. 20
- 2. Prove that (a)
 - (00*1)*1 = 1 + 0 (0 + 10)*11
 - $((111)^*)^* = (11 + 111)^*$

8

Consider the two regular expressions

$$r_1 = 0* + 1*$$
 $r_2 = 01* + 10* + 1*0 + (0*1)*$

- Find a string corresponding to r, but not to r,.
- Find a string corresponding to both r, and r,.
- (iii) Find a string in {0, 1}* corresponding to neither r, nor r₂.
- (iv) Find a string corresponding to r2, but not to r1.

12

8503

Turn over

(2)

3. Design a Moore's machine which will count how many times substring aab occurs in a long input string. Count can be maintained by printing I each time aab occurs. 13 Define and explain Mealy machine. 7 Construct a finite automation accepting all strings over {0,1} ending in 010 or 0010. 8 Find all strings of length 5 or less in the regular set represented by $(ab + a)^* (aa + b)$ (ii) (a*b + b*a)*aa* + (ab + a)*12 $L = \{0^{n}10^{n} \mid n = 0, 1, 2....\}$ Prove that L is not a regular 5. language and write CFG to generate L. 10 $L = \{ w | w \in \{0,1\}^* \}$. Write CFG to generate L where w consists of equal number of os and 1s. 10 6. (a) Design a PDA to recognize all words in $\{a^n b^n n \ge 0\}$. Show that the set of all strings over {a, b} consisting of equal number of a's and b's is accepted by a deterministic PDA. http://www.kuonline.in>+10=20 7. Design a Turing Machine to recognize an arbitrary string divisible by 4 from $\Sigma = (0,1,2)$ 13 Define and explain Universal Turing Machine. 8. (a) Show that Fibonacci numbers are generated by a primitive recursive function. 6 Prove that "There is a recursive language L over {a,b} such that $L - \{\Lambda\}$ is not context - sensitive." 9 Define and explain unrestricted grammar. 5 8503