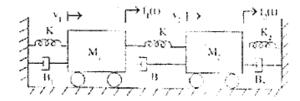
http://www.kuonline.in

Roll No	
Printed Pages · 3	

35112

BT-5 / D-17

CONTROL SYSTEM ENGG. Paper-ECE-307N

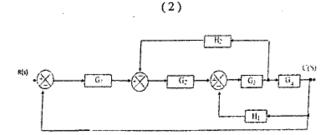

Time allowed: 3 hours]

[Maximum marks: 75

Note: - Attempt five questions, selecting at least one question from each unit.

Unit-I

- (a) Explain the open and closed loop control system with examples and list out the advantages of closed loop control system.
 5
 - (b) Write the differential equations governing the mechanical system shown in figure. Also draw the force-voltage and force-current analogous circuit.


 Using block diagram reduction techniques obtain C/R by reducing the block diagram shown below.

10

35112

Turn over

http://www.kuonline.in

(b) Derive the transfer function of a two phase A.C.

Servomotors.

5

Unit-II

- (a) Explain transient response specifications.
 - (b) The open transfer function of a system with a unity feedback gain is given as $G(s) = \frac{20}{(s+5)(s+20)}$. Determine the damping ratio, maximum overshoot, rise time and peak time. Derive the used formula also.
- (a) Describe steady state error and static error constants in unity feedback control system.
 - (b) Explain the concept of stability and the necessary conditions for stability using Routh and Hurwitz criterion. 10

Unit-III

5. Construct the Nyquist plot for a system whose open loop transfer

35112

http://www.kuonline.in

(3)

function is given by G(s) H(s) = $\frac{K(1+s)^2}{s^3}$. Find the range of K for stability.

6. Draw the Bode Plot for the control system having $G(s) = \frac{K}{s(1+0.1s)(1+0.05s)}.$ Find the value of K to have gain margin of 7db and phase margin of 18db.

Unit-IV

- 7. (a) Obtain the state variable representation of an armature controlled DC motor. 5
 - (b) Define Controllability and observability and Test Controllability of system given by following equation. 10

$$\dot{\mathbf{x}}_1 = \mathbf{x}_2 + \mathbf{u}$$

$$x_2 = -5x_1 - 4x_2 + 2u$$

- 8. Write short note on any three of following: 5×3=15
 - (a) Concept of state variables.
 - (b) State Models
 - (c) Feedback Compensation
 - (d) State Space Analysis.

35112