Roll No.

Total Pages: 3

BT-6/M-20

36135

ELECTRIC DRIVES AND TRACTION Paper–EE-310 N

Time: Three Hours] [Maximum Marks: 75

Note: Attempt *five* questions in all, selecting at least *one* question from each unit. All questions carry equal marks indicated against them.

UNIT-I

- **1.** (a) Explain the block diagram of an electric drive. State essential parts of electric drives.
 - (b) A constant speed drive has the following cycle:
 - (i) Load rising from 0 to 400 kW: 5 min.
 - (ii) Uniform load of 500 kW: 5 min.
 - (iii) Uniform load having regenerative power of 400 kW returned to supply : 4 min.
 - (iv) Remains idle for : 2 min.

Estimate power rating of the motor. Assume losses to be proportional to $(power)^2$.

2. (a) Discuss the multi-quadrant operation of electric drive.

8

(b) A motor is used to drive a hoist. Motor characteristrics are given by :

Quadrants I, II and IV : T = 200-0.2 N, N-m

Quadrants II, III and IV : T = -200-0.2 N. N-m

Where N is speed in r.p.m.

When hoist is loaded, the net load torque

 $T_l = 100$, N-m and when it is unloaded, net load torque $T_l = -80$, N-m. Obtain the equilibrium speeds of operation in all the four quadrants.

UNIT-II

- **3.** (a) Discuss the regenerative method of braking of dc motors.
 - (b) A 220 V, 800 rpm, 8 A separately excited motor has an armature resistance of $0.12~\Omega$. Motor is driving under rated conditions, a load whose torque is same at all speeds. Calculate motor speed, if the source voltage drops to 200 V.
- **4.** (a) How can the speed of dc driver be controlled? Discuss any *one* speed control method in brief.
 - (b) Describe the operation of a single-phase fully-controlled rectifier control of dc separately excited dc motor? 8

UNIT-III

- 5. (a) Explain the operation of a deep-bar squirrel-cage induction motor.
 - (b) Discuss the regenerative braking method of induction motor. What are its advantages?

- **6.** (a) What is the stator voltage control of induction motor? Explain.
 - (b) State and explain the roles of a damper winding in a synchronous motor.

UNIT-IV

- 7. (a) Discuss the speed-time curve of a traction drive. How is it approximated?
 - (b) A 100-tonne motor coach is driven by 4 motors each developing a torque of 5000 N-m during the acceleration. If up-gradient is 50 in 1000, gear ratio a = 0.25, gear transmission efficiency 98%, wheel radius 0.54 m, train resistance 25 N/tonne, effective mass on account of rotational inertia is 10% higher, calculate the time taken to attain a speed of 100 kmph.
- **8.** (a) Define the coefficient of adhesion? What are the factors that influence its value?
 - (b) A train service consists of following:

Uniform acceleration of 5 kmphps for 30 sec.

Free running for 10 min.

Uniform braking at 5 kmphps for stopping A stop of 5 min.

Calculate:

- (i) Distance between the stations,
- (ii) Average speed, and
- (iii) Scheduled speed.

8