BT-6/M-20

36127

OPERATION RESEARCH
 Paper-ME-306 N
 Opt. (I)

Time : Three Hours]
[Maximum Marks : 75

Note : Attempt only 5 questions, selecting at least one question from each unit. Unless stated otherwise, the Symbols have their usual meaning in context with the subject. Assume suitably and state, additional data required, if any.

UNIT-I

1. Explain with the help of examples, the necessity and scope of Operations Research in industry. 15
2. Solve the following L.P.P. :

Minimize $Z=4 a+2 b$
subject to : $3 a+1 b \geq 27$
$-1 a-1 b \leq-21$
$1 a+2 b \geq 30$ and both a and b are ≥ 0.

UNIT-II

3. Four factories, A, B, C and D produce sugar and the capacity of each factory is given as : Factory A produces 10 tons of sugar and B produces 8 tons of sugar, C produces 5 tons of sugar and that of D is 6 tons of sugar. The sugar has demand in three markets X, Y and Z The demand of market X is 7 tons, that of market Y is 12 tons and the demand of market

Z is 4 tons. The following matrix gives the returns the factory can get, by selling the sugar in each market. Formulate a transportation problem and solve for maximizing the returns.

	Profit in Rs. per ton $(\times 100)$ Markets		Availability in tons	
X	Y	Z		
Factories				
A	4	3	2	10
B	5	6	1	8
C	6	4	3	5
D	3	5	4	6
Requirement (tons)	7	12	4	$\Sigma b=29$

4. A small project is composed of 7 activities whose time estimates are listed below. Activities are being identified by their beginning (i) and ending (f) node numbers.

	Activities	Time in weeks		
i	j	t_{0}	$t 1$	t_{p}
1	2	1	1	7
1	3	1	4	7
1	4	2	2	8
2	5	1	1	1
3	5	2	5	14
4	6	2	5	8
5	6	3	6	15

1. Draw the network.
2. Calculate the expected variances for each.
3. Find the expected project completed time.

UNIT-III

5. With the help of a single server queuing model having interarrival and service times constantly 1.4 minutes and 3 minutes, respectively. Explain discrete simulation technique taking 10 minutes as the simulation period. Find from this average waiting time and percentage of idle time of the facility of a customer. Assume that initially the system is empty and the first customer arrives at time $t=0$.
6. (a) Write a note on basic structure of queuing models citing some commonly known queuing situations.
(b) Explain with an example, the steps in decision theory.

UNIT-IV

7. In a departmental store one cashier is there to serve the customers. The customers pick up their needs by themselves. The arrival rate is 9 customers for every 5 minutes and the cashier can serve 10 customers in 5 minutes. Assuming Poisson arrival rate and exponential distribution for service rate, find :
(a) Average number of customers in the system.
(b) Average number of customers in the queue or average queue length.
(c) Average time a customer spends in the system.
(d) Average time a customer waits before being served.
8. In a certain game, player A has three possible courses of action L, M and N, while B has two possible choices P and Q. Payments to be made according to the choice made.

Choices	Payments
L, P	A pays B Rs. 3
L, O	B pays A Rs. 3
M, P	A pays B Rs. 2
M, Q	B pays A Rs. 4
$\mathrm{~N}, \mathrm{P}$	B pays A Rs. 2
$\mathrm{~N}, \mathrm{Q}$	B pays A Rs. 3

What are the best strategies for players A and B in this game?
What is the value of the game for A and B ?

