Roll No.

Total Pages: 05

BT-5/D-18

35142

STRUCTURE AND PROPERTIES OF FIBRES TT-301-N

me: Three Hours

[Maximum Marks: 75

Note: Attempt Five questions in all including Q. No. 1 which is compulsory. Select *one* question from each Unit. All questions carry equal marks.

- 1. Attempt all following multiple choice questions, each question carries 1 mark:
 - (i) X-ray diffraction is used to find out:
 - (a) Refractive index
 - (b) Birefrignece
 - (c) Crystallite orientation
 - (d) All of the above
 - (ii) Birefringence value of acrylic fibre is:
 - (a) Zero
- (b) Negative
- (c) Positive
- (d) None of these
- (iii) The moisture regain of cotton fibre at 65% RH is in the range of:
 - (a) 2-3%
- (b) 7-8%
- (c) 10-11%
- (d) 14-15%

(2-70/5) L-35142

P.T.O.

(iv)	Textile fibres behave like:					
	(a)	Pure Elastic	(b)	Viscouse		
	(c)	Visco-elastic	(d)	All of these		
(v)	Maxv	vell model describ	e the	phenomenon of:		
	(a)	Thermal expansion	n			
	(b)	Fringed miceller	mode	1		
	(c)	Glass transition t	heory	*		
	(d)	Visco-elasticity		•		
(vi)	Cellu	lose is made up o	of:			
	(a)	C,H,O	(b)	C,H,N		
	(c)	С,Н,СООН	(d)	C,N,COOH		
(vii)	Stren	gth of which fibre	reduce	es under wet condition:		
	(a)	Cotton	(b)	Polyester		
	(c)	Nylon	(d)	None of these		
(viii)	Find	the odd one out	:			
	(a)	Tenacity	(b)	Yield point		
•	(c)	Work of rupture	(d)	Crystallinity		
(ix)	Whic	ch equation shows	s the	right relation between		
	Trans	sverse Area Swe	lling	(SA) and Transverse		
	Diameter Swelling (SD) for a cotton fibre:					
	(a)	$S_A = 2S_D + S_D^2$	(b)	$S_D = 2S_A + S_D^2$		
	(c)	$S_D = 2S_D + S_A^2$	(d)	None of these		
(x)	Find	the odd one out	:			
	(a)	Strain	(b)	Elonagation		
	(c)	Extension	(d)	Yield point		
L-35142		2	!			
		. *				

•							
•	(xi)	Find	the right equation	n for	yarn friction passing		
		over	a guide :				
		(a)	$T_2/T_1 = e^{\mu \dot{\theta}}$	(b)	$T_2/T_1 = e^{T\theta}$		
		(c)	$T_2/\mu\theta = T_1e^{\theta}$	(d)	$\mu\theta = e^{T_2/T_1}$		
	(xii) Find the odd one out:						
		(a)	X-ray	(b)	SEM		
		(c)	IR-spectroscopy	(d)	Radio wave		
-	(xiii) A good fibre forming polymer should not have						
	•	(a)	Linear polymeric	chai	n		
		(b)	Branched polymore	eric c	hain		
		(c)	High DP				
		` '	High inter mole				
	(xiv)) When the fibre molecules are arranged in random					
**		then it is:					
		(a)	High orientation	(b)	Low orientation		
			Crystalline		Amorphous		
	(xv)		the odd one out	:	1×15=15		
		` '			Elasticity		
		(c)	Resiliency	(d)	Amorphous		
			Unit	I			
2.	(a)	Expl	ain fine structure	mode	ls proposed to describe		
		fibre	morphology.		8		
	(b)	Expl	ain the applicati	on o	f X-ray techniques in		
		texti	les.		7		
(2-70	/6) L-3	35142	•	3	P.T.O.		
					`		

- Describe the physical and chemical structure of 3. (a) cotton and polyester fibre. **10** (b) Write a short note on folded chain crystal model. 5 Unit II 4. (a) Define and discuss the significance of the following
- terms related to mechanical properties of fibres:
 - (i) yield point (ii) work of rupture (iii) initial modulus (iv) elastic recovery
 - Explain creep and stress relaxation for elastic,
 - viscous and viscoelastic material with suitable diagrams.
- 5. (a) Discuss different theories put forward to explain the frictional behaviour of textile materials. 10
 - Discuss the method to measure fibre friction by (b) static method.

Unit III

- 6. (a) Describe the theory of quantitative analysis of moisture adsorption in cotton. 8
 - (b) Explain the principle and experimental set up for measurement of birefingence. 7

L-35142

(b)

7. (a) What is hysteresis? Discuss the relation between moisture regain and relative humidity. (b) Discuss in general the diffusion theory of moisture absorption in fibres. 5 (c) Define refractive index and optical birefringence. What is the relation between birefringence and orientation in fibres? 5
Unit IV
8. (a) Describe molecular motion and transition phenomenon on heating. (b) Explain thermal expansion behaviour of fibres with necessary derivations. 5 (c) Why melting is called a first order transition and glass transition is known as second order transition. 5
 (a) Describe the dielectric effects in the materials. 5 (b) What are the factors that influence the electrical resistance of textile materials? (c) Describe the methods to minimize static generation in textiles.