Roll No.

Total Pages: 03

MCA/D-18

10061

COMPUTER ORGANIZATION MCA-14-12

Time: Three Hours]

[Maximum Marks: 80

Note: Attempt *Five* questions in all. Q. No. 1 is compulsory.

Attempt *four* more questions selecting *one* question from each Unit.

- 1. Answer the following questions in brief:
 - (a) Simplify (w.x)' + x'.z' + w'.x.y.z + x.y.z using Boolean algebra and realise the circuit.
 - (b) Explain the following terms w.r.t. floating point numbers: precision, overflow, NaN and normalization.
 - (c) What is locality of reference? Explain its signficance?
 - (d) Distinguish between write-through and copy-back cache designs.4×4=16

Unit I

2.	(a)	Simplify the following Boolean function using Quine McCluskey procedure: 8
		$F(A,B,C,D) = \Sigma(0, 2, 8, 9, 10, 11, 14, 15)$
	(b)	What is Decoder ? Design a BCD-to-Seven-Segment
		decoder. 8
3.	(a)	What is Shift Register? Design a 4-bit left-shift
		register. 8
	(b)	What is JK flip-flop? Explain its working with the
		help of logic diagram and characteristics table. 8
Unit II		
4.	(a)	Explain read and write operations in memory with
		the help of timing diagram. Also distinguish between
		SRAM and DRAM. 8
	(b)	How can you construct 8×4 memory subsystem
		from two 8×2 ROM chip with control signals ? 8
5.	(a)	What is I/O Interface ? Draw the block diagram for
		generic I/O interface circuitry for an output device
		along with its load logic circuitry.
	(b)	What is RTL? Design Total Booth controller using
		RTL. 8

Unit III

- 6. (a) What is hardwired control? Design hardwired control CPU with 6 bit address, 4 instructions and 64 byte memory.
 - (b) What is the purpose of microsequencer? Design a simple microsequencer.
- 7. Write a shift-add multiplication algorithm. Convert the algorithm into RTL code. Give the hardware implementation of this algorithm.

Unit IV

- 8. (a) Why do you have levels in cache memory? Explain the associative mapping scheme.
 - (b) What is segmentation? Explain conversion of logical address into physical address using segmentation.
- (a) Explain source-initiated data transfer using handshaking with the help of suitable daigram.
 - (b) Write a short note on USB standard. 8