Roll No.

Total Pages: 03

CMDQ/M-20

5524

ADVANCED DISCRETE MATHEMATICS MSM-406

Time: Three Hours [Maximum Marks: 70

Note: Attempt *Five* questions in all, selecting at least *two* questions from each Section. All questions carry equal marks.

Section I

- (a) Let L and L' be lattices. Prove that a 1-1 and onto map f: L → L' is an isomorphism of lattices iff both f and f⁻¹ are order perserving maps.
 - (b) Prove that the lattice of all subspaces of a vector space V over a field F is a modulator lattice, but need not be distributive.
- **2.** (a) Let L be a modular lattice and $a, b \in L$ be such that $a \ge b$. Prove that any two finite chains connecting a and b have isomorphic requirements.
 - (b) Let $a_1, a_2, \ldots, a_m, a_{m+1}$ be elements of a modular lattice L. Prove that if a_1, a_2, \ldots, a_m are independent and $a_{m+1} \wedge (a_1 \vee a_2 \vee \ldots \vee a_m) = 0$, then $a_1, a_2, \ldots, a_m, a_{m+1}$ are independent.

(2)L-5524

1

- **3.** (a) Prove that in a complemented modular lattice either of the chain conditions implies the other.
 - (b) Prove that a Boolean algebra defines a Boolean ring with unity.
- **4.** (a) Prove that a finite Boolean algebra is isomorphic to the Boolean algebra of the power set of a set X.
 - (b) Draw a simplified switching circuit of the switching function:

$$F(a, b, c) = a.c + b.(b' + c).(a' + b.c')$$

Section II

5. (a) Let G = (V, E) be a simple (n, m) graph of k components. Prove that :

$$m \le \frac{(n-k)(n-k+1)}{2}$$

- (b) Prove that a connected graph G remains connected after removing an edge *e* from G iff *e* is in some circuit in G.
- **6.** (a) Prove that a connected graph G is a Euler graph iff degree of each vertex of G is even.
 - (b) Prove that a connected graph of n vertices and n-1 edges is a tree.

(2)L-5524

- 7. (a) Let S_1 and S_2 be two distinct cut-sets of a connected graph G. Prove that $S_1 \oplus S_2$ is the union of edge disjoint cut-sets.
 - (b) Prove that the Kuratowski's second graph $k_{3,3}$ is non-planar.
- **8.** (a) Prove that the dimension of the circuit subspace corresponding to a connected graph G is the nullity of G.
 - (b) Prove that the rank of the incidence matrix A(G) of a connected graph G is the rank of G.