## Roll No.

Total Pages : 03

## CMDQ/M-20

# ADVANCED DISCRETE MATHEMATICS MSM-406 

Time : Three Hours]

[Maximum Marks : 70

Note : Attempt Five questions in all, selecting at least two questions from each Section. All questions carry equal marks.

## Section I

1. (a) Let L and L ' be lattices. Prove that a $1-1$ and onto map $f: \mathrm{L} \rightarrow \mathrm{L}^{\prime}$ is an isomorphism of lattices iff both $f$ and $f^{-1}$ are order perserving maps.
(b) Prove that the lattice of all subspaces of a vector space V over a field F is a modulator lattice, but need not be distributive.
2. (a) Let L be a modular lattice and $a, b \in \mathrm{~L}$ be such that $a \geq b$. Prove that any two finite chains connecting $a$ and $b$ have isomorphic requirements.
(b) Let $a_{1}, a_{2}, \ldots \ldots . . ., a_{m}, a_{m+1}$ be elements of a modular lattice L. Prove that if $a_{1}, a_{2}, \ldots . . . ., a_{m}$ are independent and $a_{m+1} \wedge\left(a_{1} \vee a_{2} \vee \ldots \ldots . . \vee a_{m}\right)=0$, then $a_{1}, a_{2}, \ldots \ldots . ., a_{m}, a_{m+1}$ are independent.
(2)L-5524
3. (a) Prove that in a complemented modular lattice either of the chain conditions implies the other.
(b) Prove that a Boolean algebra defines a Boolean ring with unity.
4. (a) Prove that a finite Boolean algebra is isomorphic to the Boolean algebra of the power set of a set X.
(b) Draw a simplified switching circuit of the switching function :

$$
\mathrm{F}(a, b, c)=a \cdot c+b \cdot\left(b^{\prime}+c\right) \cdot\left(a^{\prime}+b \cdot c^{\prime}\right)
$$

## Section II

5. (a) Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple $(n, m)$ graph of $k$ components. Prove that :

$$
m \leq \frac{(n-k)(n-k+1)}{2}
$$

(b) Prove that a connected graph $G$ remains connected after removing an edge $e$ from G iff $e$ is in some circuit in G.
6. (a) Prove that a connected graph $G$ is a Euler graph iff degree of each vertex of $G$ is even.
(b) Prove that a connected graph of $n$ vertices and $n-1$ edges is a tree.
(2)L-5524

2
7. (a) Let $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ be two distinct cut-sets of a connected graph G. Prove that $S_{1} \oplus S_{2}$ is the union of edge disjoint cut-sets.
(b) Prove that the Kuratowski's second graph $k_{3,3}$ is non-planar.
8. (a) Prove that the dimension of the circuit subspace corresponding to a connected graph G is the nullity of G.
(b) Prove that the rank of the incidence matrix $A(G)$ of a connected graph $G$ is the rank of $G$.

