Roll No

Total Pages : 02

CMDQ/M-20
 5526
 ALGEBRAIC NUMBER THEORY MSM-408

Time : Three Hours]
[Maximum Marks : 70

Note : Attempt Five questions in all, selecting at least two questions from each Section.

Section I

1. State and prove Liouville theorem. Using this theorem prove that :

$$
\sum_{n=0}^{\infty} \frac{1}{10^{\underline{n}}}
$$

is transcendental.
2. Let $m \in \mathbf{Z}$ and α be an algebraic integer, let $f(x)$ be the minimal polynomial of α. Show that :

$$
d_{k / \mathbf{Q}}(\alpha+m)=(-1)^{n} \mathrm{C}_{2} \prod_{i=1}^{n} f^{\prime}\left(\alpha^{(i)}\right)
$$

3. If $\mathbf{Q} \subseteq \mathrm{K} \subseteq \mathrm{L}$ and K, L are algebraic number fields, prove that $d_{\mathrm{K}} / d_{\mathrm{L}}$.
(2)L-5526
4. Show that every non-zero prime ideal of O_{k} is maximal and every unique factorization domain is integrally closed.

Section II

5. Determine the prime ideal factorization of (7), (29) and (31) in $k=\mathbf{Q}\left(2^{1 / 3}\right)$. 14
6. Show that the equation : 14

$$
x^{2}+5=y^{3}
$$

has no integral solution.
7. Show that number of quadratic residues $\bmod p$ is equal to the number of quadratic non-residues $\bmod p$. Hence prove that $\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=0$ for any fixed prime p.
8. If p is a prime congruent to 13 or $17(\bmod 20)$, show that $x^{4}+p y^{4}=25 z^{4}$ has no solution in integers. 14

