Roll No. Total Pages : 02

CMDQ/M-20

5526

ALGEBRAIC NUMBER THEORY MSM-408

Time: Three Hours [Maximum Marks: 70

Note: Attempt *Five* questions in all, selecting at least *two* questions from each Section.

Section I

State and prove Liouville theorem. Using this theorem prove that:

$$\sum_{n=0}^{\infty} \frac{1}{10^{|\underline{n}|}}$$

is transcendental.

2. Let $m \in \mathbb{Z}$ and α be an algebraic integer, let f(x) be the minimal polynomial of α . Show that :

$$d_{k/\mathbf{Q}}(\alpha+m) = (-1)^{n} C_2 \prod_{i=1}^{n} f'(\alpha^{(i)})$$

3. If $\mathbf{Q} \subseteq \mathbf{K} \subseteq \mathbf{L}$ and \mathbf{K} , \mathbf{L} are algebraic number fields, prove that $d_{\mathbf{K}}/d_{\mathbf{L}}$.

1

(2)L-5526

4. Show that every non-zero prime ideal of O_k is maximal and every unique factorization domain is integrally closed.

14

Section II

- 5. Determine the prime ideal factorization of (7), (29) and (31) in $k = \mathbf{Q}(2^{1/3})$.
- 6. Show that the equation:

$$x^2 + 5 = v^3$$

has no integral solution.

7. Show that number of quadratic residues mod p is equal to the number of quadratic non-residues mod p. Hence

prove that
$$\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = 0$$
 for any fixed prime p . 14

8. If p is a prime congruent to 13 or 17 (mod 20), show that $x^4 + py^4 = 25z^4$ has no solution in integers.

(2)L-5526