Roll No.

Total Pages : 03

CMDQ/M-20
 5532
 LINEAR PROGRAMMING
 MSM-414

Note : Attempt Five questions in all, selecting at least two questions from each Section.

Section I

1. (a) Prove that a necessary and sufficient condition for the existence and non-degeneracy of all possible basic solutions of the system $\mathrm{A} x=b$ is the linear independence of every set of m columns from the augmented matrix $[\mathrm{A}: b]$.7
(b) If a closed and strictly bounded convex set has a finite number of extreme points, then prove that any point in the set can be written as a convex combination of the extreme points.
2. (a) Consider a Linear Programming Problem (LPP) :

Maximize $\mathrm{Z}=3 x_{1}+2 x_{2}+x_{3}$
Subject to the constraints :

$$
\begin{aligned}
3 x_{1}+2 x_{2}+2 x_{3} & =8 \\
3 x_{1}+4 x_{2}+x_{3} & =7, x_{i} \geq 0 .
\end{aligned}
$$

(2)L-5532

Move from one basic feasible solution $x_{3}=3$, $x_{2}=1$ to another basic feasible solution such that the value of the objective function improves. 7
(b) Explain slack and surplus variables. Give an example of each. What is the significance of these variables?
3. (a) Solve the following LPP using simplex method : 10

$$
\begin{aligned}
8 x_{1}+3 x_{2}+4 x_{3}+x_{4} & \leq 7 \\
2 x_{1}+6 x_{2}+x_{3}+5 x_{4} & \leq 3 \\
x_{1}+4 x_{2}+5 x_{3}+2 x_{4} & \leq 8 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}
$$

Maximize $Z=3 x_{1}+4 x_{2}+x_{3}+7 x_{4}$.
(b) Explain briefly the conversion of a minimization problem to a maximization problem.
4. What is phase I of the two-phase method for artificial variables ? Solve the LPP :
Maximize $\mathrm{Z}=x_{1}+3 x_{2}+2 x_{3}+5 x_{4}+x_{5}+6 x_{6}$
Subject to constraints :

$$
\begin{aligned}
3 x_{1}+4 x_{2}+5 x_{3}+x_{4}+x_{5}+x_{6} & =8 \\
x_{1}+3 x_{2}+2 x_{3}+5 x_{4}+2 x_{5}+x_{6} & =3 \\
2.5 x_{1}+5 x_{2}+4.5 x_{3}+5.5 x_{4}+2.5 x_{5}+4 x_{6} & =7 \\
x_{1}(i=1,2, \ldots \ldots ., 6) & \geq 0 .
\end{aligned}
$$

Section II

5. (a) Explain dual simplex algorithm.
(b) Give geometrical interpretation of the perturbation method.
6. Compare simplex and revised simplex methods. Using revised simplex method, solve the following LPP : $\mathbf{1 4}$ Maximize $Z=x+2 y$
Subject to the constraints :

$$
\begin{aligned}
4 x+3 y & \leq 6 \\
x+6 y & \leq 3 \\
x, y & \geq 0 .
\end{aligned}
$$

7. (a) State and prove strong duality theorem.

7
(b) Find the dual of :

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right)\binom{x}{y} \leq\binom{-4}{3} \\
x, y \geq 0
\end{gathered}
$$

$$
\text { Maximize } \mathrm{Z}=2 x+y
$$

8. Explain primal dual algorithm. Construct an example to illustrate steps of solving a LPP with primal-dual algorithm.
