Roll No.

Total Pages: 03

CMDQ/M-20

5532

LINEAR PROGRAMMING MSM-414

Time: Three Hours [Maximum Marks: 70

Note: Attempt *Five* questions in all, selecting at least *two* questions from each Section.

Section I

- (a) Prove that a necessary and sufficient condition for the existence and non-degeneracy of all possible basic solutions of the system Ax = b is the linear independence of every set of m columns from the augmented matrix [A : b].
 - (b) If a closed and strictly bounded convex set has a finite number of extreme points, then prove that any point in the set can be written as a convex combination of the extreme points.
- 2. (a) Consider a Linear Programming Problem (LPP) : Maximize $Z = 3x_1 + 2x_2 + x_3$ Subject to the constraints :

$$3x_1 + 2x_2 + 2x_3 = 8$$

 $3x_1 + 4x_2 + x_3 = 7, x_i \ge 0.$

(2)L-5532

1

Move from one basic feasible solution $x_3 = 3$, $x_2 = 1$ to another basic feasible solution such that the value of the objective function improves. 7

(b) Explain slack and surplus variables. Give an example of each. What is the significance of these variables?

7

3. (a) Solve the following LPP using simplex method: 10

$$8x_1 + 3x_2 + 4x_3 + x_4 \le 7$$

$$2x_1 + 6x_2 + x_3 + 5x_4 \le 3$$

$$x_1 + 4x_2 + 5x_3 + 2x_4 \le 8$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Maximize $Z = 3x_1 + 4x_2 + x_3 + 7x_4$.

- (b) Explain briefly the conversion of a minimization problem to a maximization problem. 4
- **4.** What is phase I of the two-phase method for artificial variables? Solve the LPP:

Maximize $Z = x_1 + 3x_2 + 2x_3 + 5x_4 + x_5 + 6x_6$ Subject to constraints :

$$3x_1 + 4x_2 + 5x_3 + x_4 + x_5 + x_6 = 8$$

$$x_1 + 3x_2 + 2x_3 + 5x_4 + 2x_5 + x_6 = 3$$

$$2.5x_1 + 5x_2 + 4.5x_3 + 5.5x_4 + 2.5x_5 + 4x_6 = 7$$

$$x_1 \ (i = 1, 2, \dots, 6) \ge 0.$$

Section II

- 5. (a) Explain dual simplex algorithm. 7
 - (b) Give geometrical interpretation of the perturbation method.

2

(2)L-5532

7

7

6. Compare simplex and revised simplex methods. Using revised simplex method, solve the following LPP: 14 Maximize Z = x + 2y

Subject to the constraints:

$$4x + 3y \le 6$$
$$x + 6y \le 3$$
$$x, y \ge 0.$$

- 7. (a) State and prove strong duality theorem.
 - (b) Find the dual of:

$$\begin{pmatrix} 1 & 4 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \le \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$
$$x, \ y \ge 0.$$

Maximize Z = 2x + y.

8. Explain primal dual algorithm. Construct an example to illustrate steps of solving a LPP with primal-dual algorithm.14