Roll No.

CMDQ/M-20
 NUCLEAR PHYSICS-II
 Option (ii)
 PHY-403B

5652

Time : Three Hours]
[Maximum Marks : 60

Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory.

1. (a) Define scattering length. What is the significance of its sign ?3
(b) Explain the experimental demonstration of Bohr's hypothesis of compound nuclear reaction. 3
(c) Using extreme single particle model predict the ground state electric quadrupole moment of :
(i) ${ }^{16} \mathrm{O}$
(ii) ${ }^{17} \mathrm{O}$
(iii) ${ }^{17} \mathrm{~F}$ nuclei.
(d) Express $\mathrm{Y}_{2,-2}(\theta, \varphi)$ in terms of the Cartesian components of the unit vector in the direction (θ, φ).

Unit I

2. (a) Discuss in detail the exchange mechanism of nuclear interaction.
(b) Derive an expression for $n-p$ scattering cross-section within the framework of effective range theory. 6
3. (a) Obtain expressions of scattering cross-section for scattering of neutrons by ortho and para hydrogen. Hence show that the nuclear interaction is spin dependent.
(b) Calculate the magnetic dipole moment of deuteron in its ground state. Assume that the ground state of deuteron is a pure ${ }^{3} \mathrm{D}_{1}$ state.

Unit II

4. (a) Derive expressions for scattering and reaction crosssections in the channel of l th partial wave. Show that when the phase shift is purely real only scattering occurs.
(b) Derive the formula $\sigma_{\mathrm{SC}}=\sum_{l}(2 l+1) \frac{\pi}{k^{2}}\left[\mathrm{~A}_{l}(\right.$ pot $)+$ $\mathrm{A}_{l}($ res $\left.)\right]^{2} \quad$ with $\quad \mathrm{A}_{l}($ pot $)=e^{-2 i \xi_{l}} \quad$ and $\mathrm{A}_{l}($ res $)=\frac{-2 i \mathrm{~K}_{l}}{f_{l}-\mathrm{S}_{l}-i \mathrm{~K}_{l}}$. All the symbols have their usual meanings. Show that $\mathrm{A}_{l}(p o t)$ corresponds to scattering by an impenetrable sphere of radius R. 6
5. Explain evidences in favour of direct nuclear reactions. Using Born approximation derive an expression of stripping cross-section.

Unit III

6. (a) Discuss the salient features of Bohr-Wheeler theory of nuclear fission.
(b) Predict the first seven magic numbers for an isotropic harmonic oscillator potential. 6
7. (a) Discuss the prediction of nuclear spin on the basis of nuclear shell model of nuclei having arbitrary number of nucleons in a level. Explain pairing hypothesis and seniority wave function.
(b) Derive expressions of Schmidt values of magnetic dipole moment of nucleons. Show that the magnetic dipole moment of a closed shell nucleus is zero. 6

Unit IV

8. (a) Show that the dipole deformation leads to the translation of the centre of mass of the nucleus. 6
(b) Describe in detail the quantization of a harmonic quadrupole oscillator.

6
(3)L-5652
9. (a) For a deformed nucleus, show that mean square charge radius is given by $\left\langle r^{2}\right\rangle=\frac{3}{5} \mathrm{R}_{0}^{2}+\frac{3}{4 \pi} \mathrm{R}_{0}^{2}\left\langle\beta^{2}\right\rangle$. Symbols have usual meanings. 6
(b) Discuss the atomic nucleus as a symmetric rotor. 6

