NON-LINEAR AND DYNAMIC PROGRAMMING

Paper-ST-403\&ST-404(ii)

Time Allowed : 3 Hours] [Maximum Marks : 75

Note : Attempt five questions in all, selecting at least one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.

Compulsory Question

1. Describe the following :
(a) What is an integer programming problem? How does the optimal solution of an integer programming problem compare with that of the linear programming problem? 5
(b) Give the necessary conditions for optimization of NLPP with equality constraints.3
(c) What is fractional programming problem? 2
(d) What are the essential characteristics of dynamic programming problem?
(e) How does quadratic programming problem differ from the linear programming problem?

UNIT-I

2. (a) Determine whether the following function is convex or concave :

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=4 x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}+6 x_{1} x_{2}+x_{1} x_{3}-3 x_{1}-2 x_{2}+15 . \tag{10}
\end{equation*}
$$

(b) Describe the graphical method for the solution of an NLPP.
3. Derive the Kuhn-Tucker conditions of the following problem and find the value of x_{1} and x_{2} for which these conditions are satisfied. Is the solution optimum?

Maximize : $f\left(x_{1}, x_{2}\right)=-x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}+7 x_{1}+4 x_{2}$ Subject to : $\frac{2}{3} x_{1}+x_{2} \leq 8$

$$
\begin{aligned}
& -\frac{5}{12} x_{1}+x_{2} \leq 2 \\
& x_{2} \leq 4, x_{1}, x_{2} \geq 0
\end{aligned}
$$

UNIT-II

4. (a) Solve the following Q.P.P. by Wolfe's method :

Maximize : $f\left(x_{1}, x_{2}\right)=-x_{1}^{2}-x_{2}^{2}+2 x_{1}+3 x_{2}$

Subject to : $x_{1}+x_{2} \leq 2$

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq 3 \\
& x_{1}+x_{2} \geq 0 .
\end{aligned}
$$

(b) Describe briefly Beale's method for solving Quadratic programming problem. 7
5. (a) Solve the following Fractional Programming Problem :

Maximize : $Z=\frac{2 x_{1}+3 x_{2}}{x_{1}+x_{2}+7}$

Subject to : $3 x_{1}+5 x_{2} \leq 15$

$$
4 x_{1}+3 x_{2} \leq 12, x_{1}, x_{2} \geq 0
$$

(b) What is Separable Programming? Discuss the method to solve separable programming problem.

UNIT-III

6. (a) Solve the following integer L.P.P :

Maximize : $Z=7 x_{1}+9 x_{2}$
Subject to : $-x_{1}+3 x_{2} \leq 6$

$$
\begin{aligned}
& 7 x_{1}+3 x_{2} \leq 35 \\
& x_{1}+x_{2} \geq 0 \text { are integers. }
\end{aligned}
$$

(b) Differentiate between pure and mixed integer programming problem.
7. (a) Use branch and bound technique to solve the following integer L.P.P :

Maximize : $Z=2 x_{1}+3 x_{2}$
Subject to : $6 x_{1}+5 x_{2} \leq 25$

$$
\begin{aligned}
& x_{1}+3 x_{2} \leq 10 \\
& x_{1}, x_{2} \geq 0 \text { are integers. }
\end{aligned}
$$

(b) Explain one application of integer linear programming problem.

UNIT-IV

8. (a) Solve the following Linear programming problem by using Dynamic Programming :

Maximize : $Z=5 x_{1}+9 x_{2}$

Subject to : $-x_{1}+5 x_{2} \leq 3$

$$
\begin{aligned}
& 5 x_{1}+3 x_{2} \leq 27 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

(b) What is dynamic recursive relation? Discuss the general process of backward recursion.
9. (a) Discuss briefly :
(i) The general similarities between dynamic programming and linear programming.
(ii) How dynamic programming differs conceptually from linear programming?
(b) Explain the application of dynamic programming in optional path problem. 7

