Roll No. Total Pages : 03

MDQ/M-20

4235

INTEGRAL EQUATIONS AND BOUNDARY VALUE PROBLEMS

Paper X (MM-505) (Opt. i)

Time: Three Hours [Maximum Marks: 80

Note: Question paper is divided into four Sections. The candidates are requested to attempt *five* questions, selecting at least *one* question from each Section.

Section I

- 1. (a) Define a L₂-function i.e. a square integrable function.Define regularity conditions.8
 - (b) Solve the integral equation:

$$g(s) = f(s) + \lambda \int_0^1 (s+t) g(t) dt$$

and find the eigenvalues.

2. (a) Solve the homogeneous Fredholm integral equation:

$$g(s) = \lambda \int_0^1 e^s e^t \ g(t) \ dt$$

(2)L-4235

	(b)	Solve the integral equation :	8
		$g(s) = f(s) + \lambda \int_0^1 (1 - 3st) g(t) dt$	
3.	(a)	Find the Neumann series for the solution of integral equation :	the
		$g(s) = (1+s) + \lambda \int_0^s (s-t)g(t) dt$	
	(b)	Explain method of successive approximations.	8
Section II			
4.	State	and prove Riesz-Fisher Theorem.	16
5.	Discuss the solution of the Cauchy-type singular inte		
	equat	ion.	16
Section III			
6.	Discu Probl	uss initial value problems and Boundary Valems.	ilue 16
7.	Discu	ass representation formulas for the solutions of	the
	Lapla	ace and Poisson equations.	16
8.	State	and prove Poisson's integral formula.	16
(2)L	-4235	2	

Section IV

9. (a) Find the resolvent of the integral equation: 8

$$g(s) = f(s) + \int_0^s (s - t)g(t) dt$$

(b) Solve the integral equation: 8

$$\sin s = \left(\frac{1}{\pi}\right) \int_{-\infty}^{\infty} \left[g(t) / (t - s) \right] dt$$

10. Explain generalized three-part boundary value problem.

16